Teil 2: Was sind die Folgen für Natur und Mensch?

  1. Köhler, H. R. und Triebskorn, R. (2013); Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond?
  2. Carson, R. (1964); Der stumme Frühling
  3. Zaller J. G. et al. (2014); Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem
  4. Gaupp-Berghausen, M. et al. (2015); Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations
  5. Industrie Gruppe Pflanzenschutz (2015);IGP zu NGO-Sturmlauf: Wurm-Studie von Global 2000 ohne Aussagekraft
  6. Sattelberger, R. (2001); Einsatz von Pflanzenschutzmitteln und Biozid-Produkten im nicht- land und- forstwirtschaftlichen Bereich
  7. Österreichische Agentur für Gesundheit und Ernährungssicherheit (2015); AGES Stellungnahme zur Regenwurm-Studie der BOKU. Glyphosat und das Risiko für Regenwürmer
  8. Kniss, A. (2015); Dead plants are probably bad for earthworms
  9. Parlamentarische Anfrage (2016); Glyphosatverbot. Anfrage der Abgeordneten Cornelia Ecker an den Bundesminister für Forst- und Landwirtschaft, Umwelt und Wasserwirtschaft/ Parlamentarische Anfrage (2016); Anfrage des Abgeordneten Wolfgang Pirklhuber an den Bundesminister für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft betreffend Wissenschaftliche Erkenntnisse über auf Glyphosat basierende Herbizide
  10. Bayerischer Rundfunk (2016); Glyphosat im Weinberg: Regenwürmer auf Rückzug
  11. Goulson, D. (2013); An overview of the environmental risks posed by neonicotinoid insecticides
  12. Zaller, J. G. et al. (2016); Pesticide seed dressings can affect the activity of various soil organisms and reduce decomposition of plant material
  13. van Hoesel, W. et al. (2017);Single and combined effects of pesticide seed dressings and herbicides on earthworms, soil microoorganisms, and litter decomposition
  14. Capowiez, Y. et al. (2015);Lethal and sublethal effects of imidacloprid on two earthworm species (Aporrectodea nocturna and Allolobophora icteria)
  15. Tu, C. et al. (2011); Effects of fungicides and inseciticides on feeding behaviour and community dynamics of earthworms: Implications for casting control in turfgrass systems
  16. Pisa, L. W. et al. (2015);Effects of neonicotinoids and fipronil on non-target invertebrates
  17. Goulson, D. (2013); An overview of the environmental risks posed by neonicotinoid insecticides
  18. Bonmatin, J.-M. et al. (2015); Environmental fate and exposure, neonicotinoids and fipronil
  19. Baier, F. et al. (2016); Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia) and associated algae are altered by temperature/ Baier, F. et al. (2016); Temperature-dependence of glyphosate-based herbicide's effects on egg and tadpole growth of Common Toads
  20. Bandow, C. et al. (2014); Interactive effects of pyrimethanil, soil moisture and temperature on Folsomia candida and Sinella curviseta (Collembola)
  21. Brühl, C. A. et al. (2013); Terrestrial pesticide exposure of amphibians: An underestimated cause of global decline?
  22. Hayes, T. B. et al. (2010);Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis)
  23. Relyea, R. A. (2003); Predator cues and pesticides: A double dose of danger for amphibians
  24. Fischer, J. et al. (2014); Neonicotinoids Interfere with Specific Components of Navigation in Honeybees
  25. Pisa, L. W. et al. (2015); Effects of neonicotinoids and fipronil on non-target invertebrates
  26. Whitehorn, P. R. et al. (2012); Neonicotinoid pesticide reduces bumble bee colony growth and queen production
  27. Stoner, K.A. und Eitzer, B. D. (2012); Movement of Soil-Applied Imidaclopid and Thiamethoxam into Nectar and Pollen of Squash (Cucurbita pepo)
  28. Straub, L. et al. (2016); Neonicotinoid insecticides can serve as inadvertent insect contraceptives
  29. EASAC (2015);Ecosystem services, agriculture and neonicotinoids
  30. Gindl, J. (2014); Amtsgeheimnisse passé?
  31. Awater-Esper, S. (2017);EU-Kommission erwägt Verbot von Neonicotinoiden
  32. Greenpeace (2014);Gift im Bienen-Gepäck. Analyse von Pestizidrückständen in Bienenbrot und Pollenhöschen von Honigbienen aus 12 europäischen Ländern
  33. Goulson, D. (2014); Launch of the Worldwide Integrated Assessment (WIA) on the environmental impacts of systemic pesticides
  34. Center for Food Safety (2014); Heavy costs. Weighing the Value of neonicotinoid insecticides in agriculture
  35. Zaller, J. G. et al. (2014); Future rainfall variations reduce abundances of aboveground arthoprods in model agroecosystems with different soil types
  36. Dirzo, R. et al. (2014); Defaunation in the Anthropocene
  37. Gallai, N. et al. (2009); Economic valuation of the vulnerability of world agriculture confronted with pollinator decline
  38. Fine, J. D. et al. (2017);An Inert Pesticide Adjuvant Synergizes Viral Pathogenicity and Morality in Honey Bee Larvae
  39. Ebenda.
  40. Tappert, L. et al. (2017); Sublethal doses of imidacloprid disrupt sexual communication and host finding in a parasitoid wasp
  41. NABU (2014); Protection of biodiversity of free living birds and mammals in respect of the effects of pesticides
  42. White, D. H. et al. (1982); Organophosphate insecticide poisoning of Canada geese in the Texas Panhandle
  43. Flickinger, E. L. et al. (1980); Wildlife hazards from furadan 3G applications to rice in Texas
  44. Environmental Protection Agency (1989); Carbofuran: A Special Review Technical Support Document
  45. Stone, W. B. und Gradoni, P. B. (1985); Wildlife mortality related to the use of the pesticide diazinon
  46. Hallmann, C. A. et al. (2014);Declines in insectivorous birds are associated with high neonicotinoid concentrations
  47. Gibbons, D. W. et al. (2006); Weed seed resources for birds in fields with contrasting conventional and genetically modified herbicide-tolerant crops
  48. Geiger, F. et al. (2010); Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland
  49. Gibbs, K. E. et al. (2009);Human land use, agriculture, pesticides and losses of imperiled species / Chiron, F. et al. (2014); Pesticide doses, landscape structure and their relative effects on farmland birds
  50. Greenpeace (2015);Europe's Pesticide Addiction. How Industrial Agriculture Damages our Environment
  51. Coeurdassier, M. et al. (2014);Unintentional Wildlife Poisoning and Proposals for Sustainable Management of Rodents
  52. NABU (2013);Gefährdung und Schutz. Vögel der Agrarlandschaft
  53. Jenny, M et al. (2005); Das Rebhuhn - Symbol für eine artenreiche Kulturlandschaft / Hoffmann, J. et al. (2012); Bewertung und Verbesserung der Biodiversität leistungsfähiger Nutzungssysteme in Ackerbaugebieten unter Nutzung von Indikatorvogelarten
  54. Boyles, J. G. et al. (2011); Economic Importance of Bats in Agriculture
  55. Greenpeace (2015); Europe's Pesticide Addiction. How Industrial Agriculture Damages our Environment
  56. Pimentel, D. (1991); CRC Handbook of Pest Management in Agriculture
  57. Moriarty, F. (1988); Ecotoxicology. The study of pollutants in ecosystems
  58. Hallmann, J. et al. (2009); Phytomedizin. Grundwissen Bachelor
  59. Pimentel, D. et al. (1991); Environmental and economic impacts of reducing US agricultural pesticide use
  60. Pimentel D. et al. (1993); Assessment of environmental and economic impacts of pesticide use
  61. Schaser, C. et al. (2005);Cotton-basil intercropping: Effects on pests, yields and economical parameters in an organic field in Fayoum, Egypt
  62. Barnes, C. J. et al. (1987);Exposure of non-applicator personnel and adjacent areas to aerially applied propanil
  63. Hall, F. R. (1991); Pesticide application technology and integrated pest management
  64. Hanner, D. (1984); Herbicide drift prompts state inquiry
  65. Gerlock, G. (2013);Herbicide drift threatens Midwest vineyards
  66. Klingenschmitt, E. (2016); Gifte belasten auch Bio-Äcker
  67. Pimentel, D. (2005); Environmental and economic costs of the application of pesticides primarily in the United States
  68. Ebenda.
  69. Ebenda.
  70. Beketov, M. A. et al. (2013);Pesticides reduce regional biodiverstiy of stream invertebrates
  71. Ebenda.
  72. Ebenda.
  73. PCC Community Markets (2002);News Bites
  74. Krüger, M. et al. (2013); Glyphosate suppresses the antagonostic effect of Enterococcus spp. on Clostridium botulinum
  75. Lorenzen, S. (2013); Nervengift für Rinder. Chronischer Botulismus und der Einsatz von Glyphosat - ein Lehrbeispiel für politisches Versagen
  76. UNEP (1979);The State of Environment: Selected Topics - 1979
  77. Miller, G. T. und Spoolman, S. E. (2011); Living in the Environment
  78. Pimentel, D. (2005); Environmental and economic costs of the application of pesticides primarily in the United States
  79. Ebenda.
  80. Benbrook, C. M. (2016); Trends in glyphosate herbicide use in the United States and globally
  81. Union of Concerned Scientists (2013); "Superweeds" Resulting from Monsanto's Products Overrun U.S. Farm Landscape
  82. Dyttrich, B. (2015);Giftiger Bodenschutz à la Syngenta
  83. Anonym (2009); Auch das noch! Schmelzende Alpen-Gletscher sind giftig
  84. Villa, S. et al. (2003); Historical Trends of Organochlorine Pesticides in an Alpine Glacier
  85. Wang, X. et al. (2016); A review of current knowledge and future prospects regarding persistent organic pollutants over the Tibetan Plateau
  86. Socorro, J. et al. (2016);The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue
  87. Geisz, H. N. et al. (2008); Melting glaciers: A probable source of DDT to the Antarctic marine ecosystem
  88. Pearce, F. und Mackenzie, D. (1999); It's raining pesticides
  89. Bucheli, T. D. et al. (1998); Occurence and Behaviour of Pesticides in Rainwater, Roof Runoff, and Artificial Stormwater Infiltration
  90. ÖKO-TEST (2017); Alles andere als rosig. Rosensträuße im Test
  91. Sabatier, P. et al. (2014); Long-term relationships among pesticide applications, mobility, and soil erosion in a vineyard watershed
  92. Jamieson, A. J. et al. (2017); Bioaccumulation of persistent organic pollutants in the deepest ocean fauna
  93. Agrarministerkonferenz (2015);Ergebnisprotokoll der Agrarministerkonferenz am 2. Oktober 2015 in Fulda
  94. Malaj, E. et al. (2014); Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale
  95. Sparling, D. W. und Fellers, G. (2007); Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii
  96. Mertens, M. (2013);Glyphosat Abdrift - auch eine Gefahr für die ökologische Landwirtschaft?
  97. World Health Organization (1992); Planet O: Our Health
  98. PAN Germany (2009); Pestizide und Gesundheitsgefahren. Daten und Fakten
  99. Hart, K. und Pimentel, D. (2002); Public health and costs of pesticides
  100. Hansen, E. und Donohoe, M. (2003); Health issues of migrant and seasonal farm workers
  101. Hahn, H. et al. (2000); Erfassung von gesundheitlichen Störungen und Einschätzung toxischer Risiken durch chemische Produkte beim Menschen
  102. President's Cancer Panel (2010); Reducing Environmental Cancer Risk. What we can do now?
  103. National Academy Press (1987); Regulating Pesticides in Food: the Delaney Paradoxon
  104. President's Cancer Panel (2010); Reducing Environmental Cancer Risk. What we can do now?
  105. National Institute of Health (2017);Agricultural Health Study
  106. Shiva, V. et al. (2013); Poison in Our Foods: The Links Between Pesticides and Diseases
  107. Colborn, T. et al. (1996); Our Stolen Future: How we are threatening our fertility, intelligence, and survival: A scientific detective story
  108. Pearce, F. und Mackenzie, D. (1999); It's raining pesticides
  109. Global 2000 (2017);Glyphosat: Gefahren für Mensch, Tier & Natur
  110. Pompa, D. (2016);The Dangers of Glyphosate: An interview with Dr. Stephanie Seneff
  111. Mesnage, R. et al. (2017);Multiomics reveal non-alcoholic fatty liver disease in rats following chronic exposure to an ultra-low dose of Roundup herbicide
  112. Dolder, L. K. (2003); Metaldehyde toxicosis
  113. Roscher, E. und Juds, V. (2016); Belastung verschiedener Medien mit DDT
  114. Streissler, C. (2016); Krebserzeugende Arbeitsstoffe: Besserer Schutz
  115. Crumpton, T. et al. (2000); Developmental neurotoxicity of chlorpyrifos in vivo and in vitro: effects of nucelar transcription factors involved in cell replication and differentiation
  116. Hart, K. und Pimentel, D. (2000); Public health and costs of pesticides
  117. Guilette, E. A. et al. (1998); An anthropological approach to the evaluation of preschool children exposed to pesticides in Mexico
  118. Health and Environmental Alliance (2014); 21 residues of endocrine disrupting pesticides found in samples of children's hair
  119. Health and Environmental Alliance (2017); Endocrine disrupting pesticides in tap and surface water
  120. Carsen, E. A. et al. (1992); Evidence for decreasing quality of semen during the past 15 years
  121. Perry, M. J. et al. (2016); Sperm Aneuploidy in Faroese Men with Lifetime Exposure to Dichlorodiphenyldichloroehtylene (p,p'-DDE) and Polychlorinated Biphenyl (PCB) Pollutants
  122. ARTE (2010); Tabu Intersexualität - Menschen zwischen den Geschlechtern
  123. President's Cancer Panel (2010); Reducing Environmental Cancer Risk. What We Can Do Now?
  124. Mose, T. et al. (2008); Placental passage of benzoic acid, caffeine, and glyphosate in an ex vivo human perfusion system
  125. Dallegrave, E. et al. (2007); Pre- and postnatal toxicity of commercial glyphosate formulation in Wistar rats
  126. Skinner, M. K. et al. (2013); Environmentally Induced Transgenerational Epigenetic Reprogramming of Primordial Germ Cells and Subsequent Germ Line
  127. Benitez-Leite, S. et al. (2009); Malformaciones Congénitas Asociadas a Agrotóxicos
  128. Ministerio de Salud Pública de la Provincia del Chaco (2010); Informe Comisión de Contaminates del Agua
  129. Manikkam, M. et al. (2013); Pesticide and insect repellent mixture (permethrin and DEET) induces epigenetic transgenerational inheritance of disease and sperm epimutations
  130. PAN Germany (2013);Endokrine Wirkung von Pestiziden auf Landarbeiter, insbesondere auf Beschäftigte in Gewächshauskulturen und Gärtnereien
  131. Ebenda.
  132. Bingham, E. und Monforton C. (2010);The pesticide DBCP and male infertility
  133. Thrupp, L. A. (1991); Sterilization of workers from pesticide exposure: The causes and consequences of DBPC-induced damage in Costa Rica and beyond
  134. ORF (2010); Unfruchtbarkeit durch Schadstoffbelastung?
  135. Repetto, R. und Baliga, S. S. (1996);Pesticides and the Immune System: The Public Health Risks
  136. Hebert, H. J. (2003); EPA guidelines address kids, cancer risks
  137. Kaiser, J. (2003); How much are human lives and health worth?
  138. Pimentel, D. und Greiner, A. (1997); Environmental and socio-economic costs of pesticide use
  139. Cribb, J. (2016); Surviving the 21st Century: Humanity's Ten Great Challenges and How We Can Overcome Them
  140. PAN Germany (2009); Pestizide und Gesundheitsgefahren. Daten und Fakten
  141. Pimentel, D. und Greiner, A. (1997); Environmental and socio-economic costs of pesticide use
  142. Pimentel, D. (1997); Pest management in agriculture
  143. Pimentel, D. et al. (1991); Environmental and economic impacts of reducing US agricultural pesticide use
  144. Center for Food Safety (2014); Heavy Costs. Weighing the Vale of Neonicotinoid Insecticides in Agriculture
  145. Losey, J. E. und Vaughan, M. (2006);The economic value of ecological services provided by insects
  146. Pimentel, D. (2005); Environmental and economic costs of the application of pesticides primarily in the United States
  147. Lefebvre, M. et al. (2015);Incentives and policies for integrated pest management in Europe: a review
  148. Center for Food Safety (2016); Net loss: economic efficacy and costs of neonicotinoid insecticides used as seed coatings: updates from the United States and Europe
  149. Richter, E. D. (2002); Acute human pesticide poisonings
  150. Pimentel, D. et al. (1993);Environmental and economic effects of reducing pesticide use in agriculture
  151. Willmann, U. (2003); Prof. Besserwisser
  152. Obermüller, E. (2015);Fürchten wir uns vor den falschen Dingen?
  153. PSIRAM (2015);Glyphosat, die BOKU und der Regenwurm
  154. Robin, M.-M. (2009); Mit Gift und Genen: Wie der Biotech-Konzern Monsanto unsere Welt verändert
  155. Oppong, M. (2014); Verdeckte PR in Wikipedia. Das Weltwissen im Visier der Unternehmen
  156. Ebenda.
  157. Ebenda.
  158. Oreskes, N. und Conway, E. M. (2010); Merchants of doubt. How a handful of scientists obscured the truth on issues from tobacco smoke to global warming
  159. Beste, A. (2017); Vergiftet. Pestizide in Boden und Wasser - das Beispiel Glyphosat, Der kritische Agrarbericht Agrarbericht 2017. Schwerpunkt Wasser
  160. Haller, D. (2011); Maya Graf geht gegen Millionen-Spenden der Syngenta vor
  161. ORF (2013);Imker schlugen "Schweigegeld aus"
  162. United Nations Human Rights Council (2017); Report of the Special Rapporteur on the right to food

Unser täglich Gift

Die aufgeführten Daten und Fakten stützen sich auf das Buch "Unser täglich Gift" von Johann G. Zaller, Ökologe an der Wiener Universität für Bodenkultur sowie Experte der Österreichischen Biodiversitätskommission.

"Unser täglich Gift"