Exploring options to reduce this “food-print”, a team of city researchers from the Potsdam Institute for Climate Impact Research (PIK) now provides the first global analysis of the potential of local food production to feed hungry cities in present and future. As it turns out, a large number of urban residents in many parts of the world could be nourished by local agriculture. However, climate change might take that option off the table, if greenhouse gas emissions are not rapidly reduced.
Apples from New-Zealand, Avocados from California, steaks from Argentina, to name just a few examples - agricultural goods are transported all around the globe across all distances to provide citizens with nourishment. “Already, this comes with an enormous ‘food-print’ and we know that a growing world population not only means growing urban infrastructures but also growing resource consumption and greenhouse gas emissions,” co-author Prajal Pradhan says. “That’s why we asked ourselves: What would happen if cities source their food from local agriculture in areas surrounding them? How many people could be nourished, how much CO2 could be avoided by reduced transport needs? And last: would unmitigated global warming change the picture?”
South Asia has the biggest potential to go local with agriculture
About 35 percent of urban residents could be nourished by utilizing local land resources, the researcher's analysis reveals, but the situation is quite diverse on a global scale. Regions like Southern Asia with countries such as India could benefit a lot from local agricultural production - they could nourish actually more than 80 percent of their city population. However, if climate change, urban population growth and lifestyle changes keep on accelerating, this could completely change the picture and take the option off the table.
The researchers identified urban growth as the factor that will have the strongest impact on future urban food demand, followed by dietary changes, e.g. toward more meat consumption. Finally, climate change could reduce options by harming agricultural production. While in South Asia urban growth might reduce the local nourishment potential by about 30 percent in 2050, in Northern Africa it is climate change that reduces the potential by about 30 percent in 2050. In regions like Northern America or Western Europe the situation will, according to the study, not change that much.
When it comes to consumption patterns, cities are not only characterized by administrative boundaries, but rather as functional units including the urban hinterland. The researchers focused on city clusters, like twin cities or regions with several smaller cities close to each other, with a population of more than 100.000 people and examined 4121 of these clusters around the globe. The advantage of this approach is that close urban administrative entities are considered as one functional urban area. Therefore, New York comprises more than 1.000 administrative entities on the east coast of the USA, while the largest city clusters in terms of inhabitants were areas around megacities like Guangzhou, Tokyo and Mexico-City with a population of up to 40 million people each. Using this approach the researchers analyzed the impact of and for 2.5 billion urban residents - this equals about 70 percent of urban population in 2010.
The whole article and the study can be found here.