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Abstract

Purpose Carbon (C) dynamics in grassland ecosystem contrib-
utes to regional and global fluxes in carbon dioxide (CO,)
concentrations. Grazing is one of the main structuring factors
in grassland, but the impact of grazing on the C budget is still
under debate. In this study, in situ net ecosystem CO, exchange
(NEE) observations by the eddy covariance technique were
integrated with a modified process-oriented biogeochemistry
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model (denitrification—decomposition) to investigate the im-
pacts of grazing on the long-term C budget of semiarid
grasslands.

Materials and methods NEE measurements were conducted
in two adjacent grassland sites, non-grazing (NG) and mod-
erate grazing (MG), during 2006-2007. We then used daily
weather data for 1978-2007 in conjunction with soil prop-
erties and grazing scenarios as model inputs to simulate
grassland productivity and C dynamics. The observed and
simulated CO, fluxes under moderate grazing intensity were
compared with those without grazing.

Results and discussion NEE data from 2-year observations
showed that moderate grazing significantly decreased grass-
land ecosystem CO, release and shifted the ecosystem from
a negative CO, balance (releasing 34.00 g Cm™?) at the NG
site to a positive CO, balance (absorbing —43.02 g Cm?) at
the MG site. Supporting our experimental findings, the 30-
year simulation also showed that moderate grazing signifi-
cantly enhances the CO, uptake potential of the targeted
grassland, shifting the ecosystem from a negative CO, bal-
ance (57.08+16.45 g Cm “year ') without grazing to a
positive CO, balance (—28.58+14.60 g Cm “year ')
under moderate grazing. The positive effects of grazing
on CO, balance could primarily be attributed to an
increase in productivity combined with a significant
decrease of soil heterotrophic respiration and total eco-
system respiration.

Conclusions We conclude that moderate grazing prevails
over no-management practices in maintaining CO, balance
in semiarid grasslands, moderating and mitigating the neg-
ative effects of global climate change on the CO, balance in
grassland ecosystems.

Keywords Carbon budget - DNDC - Eddy covariance -
Grassland - Grazing - Soil heterotrophic respiration
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1 Introduction

Increasing human activity and global climatic and atmospher-
ic changes have urged the need for understanding the role of
ecosystem management in driving global carbon (C) budgets
(Lang et al. 2011). Studies on C budgets of terrestrial ecosys-
tems so far have mainly focused on peatlands and forests,
while arid and semiarid grassland ecosystems have received
much less attention, probably because of their relatively low
productivity (LeCain et al. 2002). However, as one of the most
widespread vegetation types, grasslands cover approximately
40 % of the land surface (Frank et al. 2000) and contain
around 30 % of global total soil C stocks (Anderson 1991).
Therefore, grasslands play an important role in the global C
budget (Fan et al. 1998; Hunt et al. 2004). Hence, understand-
ing the underlying mechanisms of C dynamics of the major
grassland ecosystems of the world is needed in developing
predictive global C cycle models and to accurately quantify
global C budgets (Piao et al. 2007; Schimel 1995).

The Eurasian grassland region is the largest and most
characteristic in the world, although the vegetation exhibits
strong regional features. The typical steppe is widely dis-
tributed in the eastern Eurasian steppe zone, which occupies
a total area of about 4.1x 10" ha, of which more than half is
located in China (Hao et al. 2008). Livestock grazing is the
dominant management activity in this region, affecting the
cycling of C and N via defoliation, excretal returns, and
mechanical disturbance (Allard et al. 2007; Di et al. 2011;
Schonbach et al. 2011). Grazing for example has strong
potential to affect the C budget of grassland ecosystems
through effects on C assimilation and ecosystem respiration
(Cui et al. 2005b; Hafner et al. 2012). Animal grazing has
fundamental effects on soil erosion and consequently on
ecosystem carbon storage (Hoffmann et al. 2008;
Schonbach et al. 2012). The loss of topsoil by soil erosion
consequently leads to the loss of soil productivity (Zhao et
al. 2006) and is therefore part of the soil degradation process
in semiarid environments. Soil degradation affects the soil
organic carbon, nitrogen dynamics (Mendez et al. 2006;
Hoffmann et al. 2008), and soil carbon sequestration (Lal
2003). Besides, grazing plays an important role in modify-
ing ecosystem physiological processes such as carbon fixa-
tion and respiration. By removing plant biomass, grazers
often modify canopy structure and the energy balance of
grasslands, with resulting feedbacks on soil temperature and
soil water balance (Zhou et al. 2007) and, ultimately, on net
C uptake (Soussana et al. 2007). Grazers can also indirectly
alter plant community composition through their diet selec-
tivity (Augustine and McNaughton 1998), and consequently
influence soil C inputs (De Deyn et al. 2008). So far, the
effects of grazing on the net C budget and ecosystem pro-
cesses controlling C cycling and allocation in native grass-
land ecosystems are inconclusive. For example, a reduction

in aboveground plant biomass by grazing may reduce net C
uptake (Frank et al. 2000), and a decline of C sequestration
capacity of grassland ecosystems upon grazing activity has
repeatedly been shown (e.g., Frank 2002; Nieveen et al.
2005). On the contrary, in a long-term grazing experiment in
US shortgrass prairie, LeCain et al. (2002) did not find any
changes in photosynthetic, soil respiration, and net CO, ex-
change rates between grazed pastures and exclosures.
Therefore, in order to accurately predict ecosystem C budgets,
we clearly must better understand how disturbances like graz-
ing affect the seasonal inter-annual variation in CO, exchange.

Recently, the eddy covariance (EC) technique, a micro-
meteorological method, has become widely used to measure
the net exchanges of CO,, water, and energy between plant—
soil system and the atmosphere, with reliable results over
various spatial and temporal scales (Baldocchi et al. 2001;
Hao et al. 2011). Net ecosystem CO, exchange (NEE) is an
important component of the C cycle of grassland ecosys-
tems, which physiologically determines whether the ecosys-
tem functions as a sink or a source for atmospheric CO,,
besides soil erosion. The observed fluxes of NEE provide
valuable information for understanding photosynthesis as
well as respiration at the ecosystem scale (Falge et al.
2002). However, the EC method is still relatively new and
so far only a limited amount of data have been accumulated.
Moreover, complex interactions between the primary drivers
of grassland C dynamics, including climate, soil, vegetation,
and human activity, make it difficult to reveal the mecha-
nisms controlling C dynamics (Kurbatova et al. 2008). A
further complication is that EC C flux data cannot distin-
guish between the specific physiological processes and par-
tition respiration of ecosystems into autotrophic respiration
and heterotrophic respiration underlying observed NEE var-
iations (Li et al. 2007). Therefore, an integrated approach of
EC measurements and complementary modeling studies is
needed in unraveling the underlying mechanisms and effec-
tively predicting the long-term effects of grazing on grass-
land ecosystem CO, fluxes.

In this study, we tested the effects of two contrasting
grazing treatments on in situ NEE fluxes by using EC
techniques for two consecutive years. The short-term em-
pirical data were then integrated with results from a validat-
ed process-based biogeochemical model (Kang et al. 2011),
denitrification—decomposition (DNDC), to investigate the
long-term effects of grazing on the CO, balance of the
semiarid grasslands in Inner Mongolia, China. We specifi-
cally tested whether moderate grazing can mitigate the neg-
ative effects of global climate change on the CO, balance in
grassland ecosystems. Our integrated approach provides
substantial insights into the response and C feedback mech-
anisms of the steppe ecosystem to grazing management and
contributes to more accurate predictions of the functioning
of steppe ecosystems under future climate scenarios.
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2 Materials and methods
2.1 Field sites

Net ecosystem CO, exchange was measured using the EC
technique in two adjacent grassland sites (moderate grazing,
non-grazing) located at the Xilin River Watershed in the
Inner Mongolia Autonomous Region, China in 2006-2007
(43°32'N, 116°40'E, 1,200 m above sea level) (Fig. 1). The
sites are located about 2 km apart from each other and
belong to the typical climate zone of semiarid continental
temperate steppe, with cold and dry winters and warm and
moist summers. The two sites experience similar climatic
conditions with a multi-year (1978-2007) average annual
temperature of 0.9 °C and annual precipitation of 338 mm.
The annual precipitation (rainfall and snowfall) was 291.6
and 177.8 mm for 2006 and 2007, respectively.

The non-grazing (NG) site (400x600 m) is located at
typical Leymus chinensis steppe, which has been fenced off
since 1979. The soil is dominated by dark chestnut (Mollisol)
with a depth of 100-150 cm and contains 21 % clay, 60 %
sand, and 19 % silt (Wang and Cai 1988). As a result of
exclusion of grazing, a thick litter layer has accumulated on
the soil surface. Soil porosity is 0.53 m>m >, and the field
capacity is 0.29 m*m >, with a wilting point of 0.12 m’m>
for the top 20 cm soil layer. The xeric rhizomatous grass L.
chinensis is the constructive species with Stipa grandis,
Agropyron cristatum, Cleistogenes squarrosa, and Carex
duriuscula being codominant. Plant community cover is about
25 % and can reach up to 50 % in wet years (Xiao et al. 1995).
The peak standing height of the grass clusters is approximate-
ly 50-60 cm.

The moderate grazing (MG) site is grazed by sheep (four
sheep/ha) year round except for October. Fewer plant

species occur in the MG site than in the NG site. But, as
for the NG site, L. chinensis, S. grandis, and C. squarrosa
are the most dominant species at the MG site. Artemisia
frigida, Potentilla acaulis, and Chenopodium glaucum ac-
count for a large proportion of total plant individuals but
their contribution to total biomass is relatively small. Plant
community cover is about 10-15 %. At the MG site, there is
nearly no litter accumulation. The peak standing height of
the grass clusters is approximately 20-30 cm.

2.2 Eddy covariance measurements

Both at the NG and MG sites, field measurements of NEE
fluxes were conducted continuously using EC towers from 1
May 2006 to 30 September 2007. The fetch from all directions
was more than 200 m based on calculations with a footprint
model (Kljun et al. 2004). Briefly, a three-axis sonic anemom-
eter (model CSAT3, Campbell Scientific, MS, USA) with an
open path infrared CO,/H,O gas analyzer (IRGA, LI 7500,
LI-COR Inc. NE, USA) was installed at a height of 2.2 m
above ground level to measure the CO, fluxes. The instrument
provided high frequency measurements (10 Hz), and the
turbulent flux data were recorded as half-hour averages by a
datalogger (CR5000, Campbell Scientific).

Some environmental factors used for gap-filling calcula-
tions were measured nearby the EC tower. Precipitation was
collected at a height of 1.5 m above ground level and was
measured by a tipping bucket rain gauge (TE525MM,
Campbell Scientific). Soil temperature was measured at five
depths (0.05, 0.10, 0.20, 0.50, and 1.0 m) by copper—con-
stantan thermocouples. Soil volumetric water content was
measured by time-domain reflectometer probes at 0.05, 0.2,
and 0.5 m depth. Cup anemometers (034A-L and 014A;
Traverse, MI, USA) at 1.5 and 2.5 m above ground level
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were used to measure wind speed. All meteorological data
from the sensors were collected and stored in a digital
datalogger (CR23X; Campbell Scientific).

2.3 Data quality control and processing

Uncertainties in long-term flux measurements may result
from instrument failure or from adverse atmospheric condi-
tions. To reduce the measurement-induced uncertainties, all
flux data were quality controlled by adjusting the data by the
Webb, Pearman, and Leuning algorithm (Webb et al. 1980).
To ensure optimal data quality, time series for the flux data
of CO, (Fc), latent heat (LE), and sensible heat (HS) mea-
sured during the rainfall or snowfall events or the instrument
malfunctions (e.g., system maintenance, power outages,
etc.) were excluded to eliminate inaccurate data. Since low
u* and weak turbulence can result in underestimation of the
CO, exchange rates (Jaksic et al. 20006), only flux data with
u* greater than 0.2 ms ' were used. After data quality
control, approximately 30 % of the data obtained from the
two EC towers were excluded. To fill the data gaps and
calculate daily and annual sums of the fluxes, gap-filling
approaches, such as the mean diurnal variation (MDV; Falge
et al. 2001) and the interpolation methods developed by
Aubinet et al. (2002), were adopted. The gaps introduced
were filled using several strategies. For longer gaps, empir-
ical formulas describing relationships between PAR, soil
temperature, and net ecosystem CO, flux were applied
separately for daytime and nighttime. In cases where empir-
ical relationships could not be developed as a result of
missing meteorological data, MDV method was used to fill
the gap (Falge et al. 2001). The details of the flux data
processing have been described by Hao et al. (2007).

The integrated daily NEE is the sum of the daytime net
ecosystem CO, exchange (NEEg,,) and the nighttime net
ecosystem CO, exchange (NEEjgn):

NEE = NEEqyy + NEE gy (1)

where the positive and negative values of observed NEE
represent net loss and gain of CO, by the soil-plant-atmo-
sphere system and are termed “negative CO, balance” and
“positive CO, balance,” respectively. NEEg,, represents the
sum of two component fluxes: gross primary productivity
(GPP) and total ecosystem respiration (R.). At night, GPP is
0, and hence, NEE,,1, is equal to total ecosystem respiration.

2.4 DNDC model

The DNDC model is a comprehensive process-oriented
biogeochemistry model, which has been globally used to
simulate crop growth and soil C and N dynamics based on
the input data on soil properties, climate, and farming

practices. Originally, it was developed to quantify C seques-
tration and trace gas emissions from agricultural soils (Li et
al. 1992a, b). Thereafter, it has been modified and further
expanded to simulate the biogeochemical cycling of C and
N of forests, wetlands, and grasslands (Cui et al. 2005a; Li
et al. 1996; Xu-Ri et al. 2003).

The DNDC model consists of two components and six
submodels for simulating soil climate, plant growth, soil
organic matter decomposition, nitrification, denitrification,
and fermentation, respectively (Giltrap et al. 2010; Li et al.
2007). The core of DNDC is a soil biogeochemistry model
describing carbon and nitrogen transport and transformation
driven by a series of soil environmental factors, such as
temperature, moisture, redox potential (Eh), pH, and sub-
strate concentration gradients, and anthropogenic activities
such as grassland management. Detailed management mea-
sures (e.g., fencing, grazing, cutting, fertilization, irrigation)
have been parameterized and linked to the various biogeo-
chemical processes embedded in DNDC.

In DNDC, the dynamics of the C budgets are controlled by
the balance between C uptake by photosynthesis and C loss by
respiration. As most C models, DNDC simulates ecosystem C
dynamics by tracking plant growth, litter incorporation, and
soil heterotrophic respiration. DNDC simulates plant growth
driven by the air temperature and soil water and N availability
at daily time steps by tracking photosynthesis, respiration,
water and N demand, C allocation, crop yield, and litter
production. During the simulated growing seasons, daily N
demand is calculated based on the total N demand, daily
temperature, and thermal degree days. Daily water demand
is calculated based on the daily N demand, daily potential
biomass growth, and water requirement. If there is not enough
water or N to meet the demand, water stress or N stress will
occur reducing the daily plant biomass production. The in-
crease in plant biomass production will be partitioned into the
grain, shoot (leaf + stem), and root pools of the plant at a daily
time step. The plant continuously assimilates the atmospheric
CO, into the biomass C and partitions it to the grain, leaves,
stems, and roots every day. When plants reach maturity or the
temperature drops below 0 °C, senescence will start. All the
root litter will be incorporated in the soil profile and the
aboveground residue allocated in the top soil during the se-
nescence. As soon as the litter is incorporated in the simulated
soil profile, DNDC will partition the litter into three soil litter
pools on basis of the C/N ratio of the litter, namely very labile
litter, labile litter, and recalcitrant litter, on the basis of C/N
ratio of the litter. During decomposition of the litter, part of the
litter C is consumed by the soil microorganisms and hence
converts the litter to CO,, and part of the litter C is turned into
the microbial biomass. After death of the microorganisms, the
microbial remains undergo further decomposition. During the
sequential decomposing processes, part of the organic C be-
comes CO, to be emitted into the atmosphere. So, for the
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entire plant—soil-atmospheric system, if the CO, uptake rate is
higher than the CO, emission rate, the ecosystem will gain
CO,; otherwise, the ecosystem will release CO,.

The improvement of this study is the application of grazing
management system. In the current DNDC implementation,
the influence of grazing on plant biomass is addressed by
balancing animal food demand with the amount of above-
ground biomass. Grazing in the model can be parameterized to
consume defined daily amounts of aboveground live and dead
standing plant biomass. The total daily C and N deposits are
specified, allowing for simulation of losses through animal
carcasses and milk, and input by dung and urine into the soil
litter pools. In addition, the DNDC model has a “water reten-
tion layer” function for grazed pastures, which simulates
effects of soil compaction from cattle treading on water flow.

As a national experimental station, the Xilinhot site has
accumulated records of the local vegetation and management
practices. Based on the long-term local observations, we gen-
eralized and defined several site-specific parameters such as
maximum yield, biomass partitions in the above- and below-
ground parts, C/N for the above- and belowground parts,
cumulative thermal degree days, N fixation index, soil prop-
erties, and anthropogenic activities including enclosure and
grazing. To distinguish the impacts of grazing, we set two
alternative grassland management scenarios: NG and MG
scenario. Under the NG scenario, we defined that the grass-
land was fenced without any human and grazing activity such
that all plant biomass would eventually be incorporated into
the soil. Under the MG scenario, we defined that the grazing
intensity was four sheep/ha (corresponding with the moderate
grazing intensity at our experimental field site) and the grazing
time was set year round except for October. During the graz-
ing periods, 1.65 kg dry matterha 'day ' is taken up per
sheep (Wang and Li 1997). Nutrient use efficiency by sheep
was set to 68 % for C and 6 % for N. The total daily C deposit
and N deposit are 0.54 kg Cha 'day ' and 0.04 kgNha '
day !, respectively. Deposited nitrogen in feces is split into
60 % urine and 40 % dung. The C/N ratio for dung is 16 and
the C/N ratio for urine is 0.5. Daily weather data of air
temperature and precipitation were collected for a 30-year
period (1978 to 2007) to support the simulations. The simu-
lation capacity of the DNDC model for L. chinensis steppe has
been validated (Kang et al. 2011). Given the good perfor-
mance of the model, especially the modeled responses of
NEE fluxes to climatic variation, we utilized the DNDC
model to quantify the impacts of several long-term grazing
management practices (during 1978-2007) on the C budget
for semiarid grasslands in the region of study.

2.5 Statistical analysis

Statistical significances of the effects of moderate grazing
on observed soil moisture and CO, fluxes and modeled CO,

@ Springer

fluxes (Table 1) were determined separately by analysis of ¢
test using a standard statistical analysis software SPSS
(Version 13.0, SPSS, Chicago, IL, USA). Least significance
difference was used to separate the means when differences
were significant. Significance was assumed at the P=0.05
level. Simple correlations and regression analysis between
some variables were performed.

3 Results
3.1 Field observations

Moderate grazing significantly affected the growing season C
balance of the targeted grassland ecosystem (Fig. 2). At the NG
site, the days when CO, was emitted to the atmosphere mostly
occurred during the early rapid growth and late senescence
stages over 20062007 (i.e., positive NEE; Fig. 2). Just after
winter dormancy, daily NEE differed greatly between the
2 years (peak loss values: 2.44 g Cm 2day ' in 2006, 2.17 g
Cm 2day ' in 2007). At the MG site, CO, emission signifi-
cantly decreased, C fixation capability distinctly strengthened,
and the ecosystem reached maximum uptake values of daily
CO, fluxes (1.3 g Cm 2 day ' in 2006 and —1.55 g Cm >
day ' in 2007) in late-July, and began to release CO, by mid-
August in 2006 and by mid-September in 2007. Compared to
the non-grazing management, moderate grazing increased the
annual number of days the ecosystem was a C sink (38 days in
2006 and 107 days in 2007). As indicated by lower NEE
values (see Fig. 2a, b), moderate grazing significantly en-
hanced ecosystem C fixation both in 2006 (P<0.0001) and

Table 1 The simulated 30-year mean C budget (in gram C per square
meter per year) under non-grazing (NG) and moderate grazing (MG)
scenarios for a L. chinensis steppe in Inner Mongolia, China over
1978-2007

CO, NG scenario MG scenario P values T values
fluxes

GPP 327.14+29.43 346.41+28.55 0.822 -0.226
Ranoot 69.85+6.71 70.94+6.33 0.906 -0.118
Rroot 107.70+8.12 110.20+7.65 0.823 —0.224
R, 177.55+14.77 181.14+13.93 0.86 -0.177
Ry 206.67+6.98 136.68+3.27 <0.001" 9.085
R 384.22+16.54  317.82+14.78 0.004™ 2.994
Litter 120.36+8.93 76.47+8.49 0.001" 3.562
NEE 57.08+16.45 —28.58+14.60 0.001" 3.439

GPP gross primary productivity, R. ecosystem respiration, NEE net
ecosystem exchange (negative values indicate fixation of CO, or C,
while positive values denote a net release of CO, or C), Rypoo Shoot
respiration, R, root respiration, R, plant autotrophic respiration, Ry,
soil heterotrophic respiration

*P<0.001; **P<0.01 (significant)
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2007 (P<0.0001). Cumulative NEE fluxes showed that the
NG site was a net C source during both the 2006 and 2007
growing season, releasing a total of 111 and 34 g Cm 2,
respectively (see Fig. 2¢, d). In contrast, the MG site was a
net C source during the 2006 growing season but released
+60 % less C to the atmosphere than the NG site. Moreover,
during the 2007 growing season, the MG site was a net C sink,
sequestering 43 g Cm 2

Monthly integrated NEE fluxes also showed that moder-
ate grazing significantly and strongly altered the C dynamics
of the steppe ecosystem (P<0.05; Fig. 2e). For the 2006
growing season, the NG site was a C source, ranging from
11.46 to 41.69 g Cm “month™'. For most of the 2006
growing season, the MG site was also a C source, but net
C loss at the MG site was consistently lower than at the NG

site. In July 2006, the MG site was a C sink (—5.04 g Cm ?),
while the NG site was a C source (12.35 g Cm ). For the
2007 growing season, the NG site was a C source early and
late during the season, but a C sink in between. The MG site
was a C sink for most of the growing season; only in
September, the MG site was a small C source. Except for
June, the MG site either released less or absorbed more C
than the NG site.

Moderate grazing significantly reduced soil water content
in the 2006 (P<0.0001) and 2007 growing season (P<
0.0001). Soil water content at 0—20 cm soil depth was higher
in the NG site than in the MG site during most of 2006 and
2007 growing seasons. The impact of grazing on soil water
content was greatest in September and October 2006 and in
April and May 2007 (Fig. 3).
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Fig. 3 The seasonal variation of daily mean soil water content (SWC)
at 0—20 cm soil depth during 20062007 growing season in the non-
grazing and grazing grassland. NG, non-grazing; MG, moderate
grazing

3.2 Model simulations
3.2.1 Observed long-term climate conditions

Mean annual air temperature ranged from —1.3 °C in 1985
to 2.2 °C in 2007, with a mean of 0.9 °C and a coefficient of
variation (CV) of 100 % for the 1978-2007 period (Fig. 4).
Over the 30-year period, there was a significant increase in
mean annual temperature (R°=0.24; P=0.006) and in oscil-
lation frequency. Mean annual precipitation varied from
163 mm in 2005 (extreme drought) to 507 mm in 1998,
with a mean of 338 mm for the 1978-2007 period (see
Fig. 4). On average, 89 % of annual precipitation was
concentrated in the growing season (May to September).
The CV in annual precipitation was 26.1 %. Mean annual

precipitation strongly fluctuated over time, but there was a
trend towards a decrease in mean annual precipitation for
the 1978-2007 period (R*=0.10; P=0.079; Fig.4). In sum-
mary, the L. chinensis steppe site of our study experienced a
general trend of warming and reduced annual precipitation
for the 1978-2007 period.

3.2.2 The impacts of moderate grazing on ecosystem C
fluxes

Daily weather data in conjunction with soil properties and
management practices were used as model inputs to simu-
late grassland productivity and soil C dynamics for the
1978-2007 period. The inter-annual and mean annual
NEE, GPP, and ecosystem respiration (R.), heterotrophic
respiration, plant autotrophic respiration, and litter input
under MG were compared with those under a NG scenario.

Comparison of CO, fluxes between the MG and NG
scenario showed that moderate grazing altered the inter-
annual dynamics of NEE and its components GPP and R,
(Fig. 5Sa—c). Under the NG scenario, the ecosystem on aver-
age was a source of atmospheric CO, with a mean annual
emission of 57.08+16.45 g¢ Cm “year '. In contrast, under
the MG scenario, the ecosystem on average was a sink of
atmospheric CO, with a mean annual uptake of 28.58+
14.60 g Cm *year ' (see Table 1). Under both scenarios,
NEE strongly fluctuated, but there was a trend of increasing
NEE over time (R*=0.19; P=0.019); under the MG scenar-
io, the slope was slightly smaller than under the NG scenario
(R*=0.17; P=0.022). Moderate grazing significantly en-
hanced the C sequestration capacity of the grassland eco-
system compared to the NG scenario; MG basically
converted the ecosystem from a C source to a C sink
(Fig. 5a, Table 1). Enhanced C sequestration under the
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MG scenario could be largely attributed to a reduction in
ecosystem respiration. Simulated R, values under the MG
scenario were significantly lower (minus 17 %) than under
the NG scenario (see Fig. 5c, Table 1). Additionally, mod-
erate grazing slightly increased GPP by approximately 6 %,
but the difference between the MG and NG scenario was not
statistically significant (see Fig. 5b, Table 1).

The model simulations showed that moderate grazing
significantly decreased soil respiration (R;) and heterotro-
phic respiration (Ry,) by about 25 and 34 % compared to the
NG scenario, respectively (see Fig. Sd—e, Table 1). Effects
of moderate grazing on Ry, could be attributed to a reduction
in litter input. Litter C input under the MG scenario was
significantly decreased by 36 % in comparison with the NG
scenario (see Fig. 5i, Table 1). Plant autotrophic respiration
(R,) and its components shoot respiration (Rgno0;) and root
respiration (R, did not differ between the MG and NG

0 T T T T T T
1975 1980 1985 1990 1995 2000 2005 2010

0 ; ; ; . . .
1975 1980 1985 1990 1995 2000 2005 2010
Year

L. chinensis steppe in Inner Mongolia, China under non-grazing and
moderate grazing scenarios over a 30-year period (1978-2007). Solid
line and dashed line are the 30-year linear trends of annual NEE for the
NG scenario and the MG scenario, respectively. NG, non-grazing; MG,
moderate grazing

scenarios (see Fig. 5f—h, Table 1). The annual differences
between the MG and NG scenario in R, and R. were
strongly positively correlated (Fig. 6a), as were the annual
differences between the MG and NG scenario in R, and
NEE (see Fig. 6b).

4 Discussion

The increase in atmospheric concentration of CO, by 31 %
since 1750 from fossil fuel combustion and land use change
necessitates identification of strategies for mitigating the
threat of the attendant global climate change (such as
warming and drying) (Lal 2004). In this study, we will
utilize the modeling approach (DNDC model) to explore
alternative management opportunities such as grazing to
find out to what degree we could moderate the negative
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Fig. 6 The relationship
between change in soil (a)
heterotrophic respiration (ARy) y=1.16 x + 12.22
and a change in ecosystem
respiration (AR.); b change in
NEE (ANEE) in response to
moderate grazing for a L.
chinensis steppe in Inner
Mongolia, China during 1978—
2007
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effects of climate change through improving our grassland
management practice. The DNDC model, as a process-
oriented biogeochemistry model, has been used to simulate
and predict the dynamics of C budget for the semiarid grass-
land ecosystem (Kang et al. 2011). The modeled and observed
CO, fluxes data were well in agreement (P<0.0001), both
showing that the grassland shifted from positive to negative
CO, balance from a wet year (2004) to a dry year (2005) over
growing season. Furthermore, 100-year simulations found
that, under the least human’s disturbance conditions, a cooler
or wetter future climate would substantially elevate the CO,
uptake capacity of the grassland. However, the CO, uptake
potential could significantly decrease and even become nega-
tive to turn the ecosystem to a negative CO, balance if the
climate turned to be warmer and/or drier in the coming
100 years. In addition, we realized that the current grassland
C dynamics in China are affected by a number of factors
including climate change and land use management. So, in
this study, we built on these previous findings and integrated
2-year field measurements with a 30-year modeling exercise
showing that moderate grazing significantly altered NEE
fluxes. We showed that moderate grazing even can reverse
the steppe ecosystem from a negative to a positive CO,
balance. Our findings are in accordance with the EC observed
results of Li et al. (2005) who also found that grazing had a
positive effect on C sequestration in the steppe in central
Mongolia. Considering C removed by grazing, they calculated
that the grassland ecosystem was a strong sink (—62 g Cm >
year ') under grazing management and a weak C source (20 g
Cm *year ') under non-grazing conditions. However,
Wiesmeier et al. (2011, 2012a, 2012b) and Schonbach et al.
(2012) found a clear increase of SOC of 30 % compared to
grazed sites only based on the soil system at the same
ungrazed site (ungrazed Leymus-dominated grassland, fenced
in 1979) but different grazed site.

Our results suggest that the effects of grazing on the C
dynamics of the grassland ecosystem have resulted from
changes in GPP and/or R.. The EC field observations provided
only net C fluxes, whereas with the DNDC model, we could

@ Springer

calculate GPP and R. (by simulating autotrophic and hetero-
trophic respiration) at various time steps. Results from model
simulations in the study revealed that grazing slightly in-
creased GPP of the grassland ecosystem although not signifi-
cant, indicating a stimulation of plant growth in L. chinensis
steppe. Several previous studies, including both field and
controlled pot experiments (e.g., Cui et al. 2005a; Schonbach
et al. 2011; Wang and Wang 2001) as well as model simula-
tions (e.g., Augustine and McNaughton et al. 1998; Leriche et
al. 2001) also reported positive effects of grazing on plant
productivity, such that GPP of grazed grassland ecosystems
can be maintained (compensatory growth) or stimulated (over-
compensatory growth). For example, using the CENTURY
model, Wang et al. (2008) simulated the potential changes in
net primary productivity (NPP) of L. chinensis steppe
under different grazing intensities. They found that graz-
ing (removing 10 % of the live shoots per month)
slightly increased NPP by about 3 % compared with
non-grazing conditions. This suggested that moderate
grazing intensity can stimulate plant growth in L.
chinensis steppe. The underlying mechanisms of com-
pensatory or overcompensatory responses include (1)
improvement of light availability by means of decreas-
ing aboveground litter and self-shading, increasing light
transmittance and photosynthetic rates in remaining
leaves; (2) removal of inefficient vegetation tissue con-
suming carbohydrate and other resources to providing
more nutrients for remaining tissues; and (3) reduction
of the rate of senescence of remaining leaves and stim-
ulation of plant growth by animal saliva (LeCain et al.
2000; McNaughton 1983).

The DNDC model showed that moderate grazing not
only stimulated plant production but also decreased R..
Moderate grazing significantly decreased R. by about
17 %. Consistent with our studies, Polley et al. (2008)
showed that grazing of mixed-grass prairie in North
Dakota, USA, increased the C sequestration capacity
by reducing R. relatively more than daytime ecosystem
CO, exchange (NEEg,y). Furthermore, grazing affects
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ecosystem respiration directly or indirectly through af-
fecting its individual components such as plant respira-
tion and soil heterotrophic respiration. The modeled
results showed that grazing significantly reduced Rj, by
about 34 % compared with non-grazing conditions, and
changes in R}, explained 88 % of the change in R. and
82 % of the change in NEE in our steppe ecosystem.
This suggests that the effects of grazing on the net
ecosystem C budget in our study mainly resulted from
reduced aboveground litter input (see Fig. 5i) and then
decreased soil heterotrophic respiration (see Fig. Se),
and less from stimulating plant growth (overcompensa-
tory growth).

Since a significant fraction of R}, is attributable to the
decomposition of plant litter, soil heterotrophic respira-
tion usually decreases with litter removal. In our study,
we found that litter C input under the MG scenario was
significantly decreased by 36 % in comparison with the
NG scenario due to the effects of moderate grazing.
Grazing can affect microbial community composition
and activity, and by that soil respiration directly by
increasing soil compaction (Chen and Wang 2000), de-
creasing soil porosity and soil water content (Risch et
al. 2007; Zhao et al. 2011), return of organic matter and
nutrient to the soil in relatively labile forms as dung
and urine (Augustine and McNaughton 1998), and by
affecting soil microclimate and microbial biomass car-
bon (Liu et al. 2012; Rui et al. 2011). Grazing can also
affect soil respiration indirectly by removing live plant
biomass and, hence, decreasing substrate availability for
soil biota (Wan and Luo 2003), or by altering plant
community composition and canopy structure, which in
turn can affect the chemical composition of litter input
into the soil (Lecain et al. 2000; Schonbach et al. 2011;
Sun et al. 2011).

It is worth to note that wind erosion plays a strong
role in soil C storage and ecosystem C sink/source
function in this semiarid grassland (Hoffmann et al.
2008; Wiesmeier et al. 2011, 2012a, 2012b; Steffens et
al. 2011; Kolbl et al. 2011; Schonbach et al. 2012; Wu
et al. 2012). The relatively small C gain by lower
heterotrophic respiration in 2006 and 2007 at MG site
is by far counterbalanced by a strong decline of C
storage due to wind erosion at NG site (Hoffmann et
al. 2008). Therefore, both observation and modeling
methods should be further improved to include soil
erosion for accurate explanation and prediction of eco-
system C balance. And we also should note that CO,
measurements of only 2 years are not sufficient to
obtain information about the long-term C development,
as this environment has a high climatic variability. So,
future work should focus on the long-term continuous
measurements in the semiarid grassland ecosystem.

5 Conclusions

In summary, both the field observations and the modeling study
demonstrated a higher potential of C fixation under moderate
grazing than under non-grazing management; hence, moderate
grazing prevails over non-grazing practices in maintaining CO,
balance in semiarid grasslands, promoting both sustainable
livestock production and ecosystem functioning. Recently,
due to the rising levels of atmospheric greenhouse gases, global
mean surface temperature is projected to increase between 1.8
and 4.0 °C over the next 100 years, and precipitation is
expected to become more spatially and temporally variable
(IPCC 2007). These climatic changes will significantly alter
the C budget of grassland ecosystems, decrease the plant
production, and increase ecosystem respiration (Kang et al.
2011; Zhang et al. 2005). However, alternative and appropriate
grazing management practices in the targeted grassland can be
beneficial to increasing CO, uptake, decreasing ecosystem
CO, losses through erosion and emission, and even converting
the grassland ecosystem from a negative CO, balance to a
positive CO, balance. Therefore, we conclude that moderate
grazing can moderate and mitigate the negative effects of
global climate change on the CO, balance in grassland ecosys-
tems. Moreover, carbon removed by grazing is essential for
livestock production. Hence, moderate grazing outmatches
grassland practice of exclusion of utilization, taking into con-
sideration of both sustainable livestock production and ecosys-
tem C maintenance. Furthermore, because of the strong role of
soil erosion in this semiarid environment, future works would
also focus on the effects of soil erosion on CO, balance for
accurate explanation and prediction of ecosystem C balance. In
addition, because the tower measurements only represent
fluxes at the scale of the tower footprint (i.e., ecosystem level)
with longitudinal dimensions ranging from a few hundred
meters to several kilometers, these tower fluxes need to be
upscaled to regions, continents, or the globe. Therefore, future
studies would focus on how to upscale fluxes of carbon, water,
and energy from towers to broad regions by combining obser-
vation, modeling and remote sensing technique, and advance
toward explicitly incorporating the impacts of climate change
and human disturbance on ecosystem carbon exchange, exam-
ining the magnitude, distribution, and inter-annual variability
of fluxes at regional to global scales, and quantifying uncer-
tainties associated with gridded flux estimates.
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