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Land cover of functional types in Ireland
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Temperate grasslands

About 20% of Earth’s natural vegetation is grassland
(Melillo et al.,1993).

Temperate grassland amounts to 20% of European land
area (Soussana et al., 2004).

C sequestration potential of permanent pastures
worldwide is between 0.01 and 0.3 Gt C yr1(Lal, 2004).

Soil C stocks show a high spatial variability — depends
on soil composition, structure and depth and climate.



Uncertainties in the carbon balance of European ecosystems
before the start of CarboEurope (Janssens et al. Science, 2003).
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Some conclusions from CarboEurope-1P(2010)

« The full mitigation potential of the terrestrial
vegetation in Europe Is not realised because of
GHG emissions from intensive agriculture
including grasslands.

 Including non-CO, GHGs reduces the continental
sink by about 70%.

 The new estimates of CarboEurope-IP suggest
that grasslands are a stronger sink than
estimated in 2003.

e Uncertainty for grasslands are approximately
twice those for forests.



The Carbon Cycle in Grasslands
Ecosystem Carbon Uptake and Storage




Conceptual model of C dynamics after Six et al.
(2002), showing measurable pools.
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What are the limitations?

Soil C stores ‘saturate’.

Only C that is locked into mineral particles (or wet
peat) is removed from the active C cycle.

The Inactive store is vulnerable to land-use change.

It is very difficult to prove that C stocks change over
a 5-year (commitment) period.

Intensive soil sampling Is required.
Are there other ways of doing it?



What affects C sequestration?

Past and current land use changes.
Agricultural management.

Horizontal transfer of hay/silage and manure.
Non-linear kinetics.






Management options to increase
carbon In grassland ecosystems.

Increase C inputs

§ ﬂ Increase biomass

! Forage productivity
Species selection
Fertilizer
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Effect of organic inputs on soil C
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The SOM aggregation concept

Decomposing roots and
detritus become encrusted
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Aggregate organisation
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Measuring pools: Carbon losses from solls across
England and Wales, 1978-2003 (Bellamy et al., 2005)
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CO, fluxes are monitored using eddy correlations,
Including the use of 3D sonic anemometers and fast

Infrared gas analysers.




Daily CO, fluxes over grassland, May and June 2002.
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Flux fingerprints for different land uses

2006

2005

2004

Agriculture (Gebesee)
162 m a.s.l., 513 mm rain

Net ecosystem exchange

Grassland (Mehrstedt)
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Annual sums for NEE (g C m-2yr-1)

= 3

w e E—

2 [_507 | -82 -337

zf

wE —— - = e S - e,

S | - F |

= [-187 YV 33 -309

Z E e

o

e —— [ A I

| ==

il Sl o S "150!1 . SN a '_2821 ]y
0 6 12 18 240 6 12 18 240 6 12

from: Schulze et al. (2010)

Net CO»— flux (umol m=2s™)



Autotr "h1c

Hetern-
pl;_ SR JT‘

othey
trophic DoC/BIC GHGs
anyest 3n re Reapwat.o 70% (CH, N.O)
] A
o bovrmnt b 15T 1
PHJFJLI"‘" : y UGUL[IV rd-.f l
v Net
Net Biame Net Biome Net Greenhouse Greenhouse
Productivity Productivity Gas Balance Gas Balance
_ Biam ) - NGE Soul Total NGB
a) Forests  [o C i yr)
589 63 ; 368 7 1 .
im0 (£29%) 5 (s 42%) (s 100%) Comparison of Carbon
N W ¥ + 1 1 flows through land use
(£ 5%) (+ 13%) ;
¥ % types in Europe.
55 20 19 74
(= 60%) t+ 60%) I::t 3D°Fn]
____ — = CarboEurope-IP data.
b) Grasslands [gEm'-vr' _
593 508 30 Janssens et al. (unpublished)
+ 50° 2 [+ 30 w) 1 (+ 4% [+ 3':]“4%}
(+ 309
iy lr’ ok
Lx ﬁ"] [+ 20%) l l
57 27 27
+ 135%) (£ 135%) {.t 135:'1"0}
f} tl'ﬂm [g Cm#yri]
570 257 i 319 / 30
(£ 30%) + B9 b { 28:'"'11 :, (= 42%) (+ 30%)
1120 L 550 %. *.J T * T T
(= 20%) (+ 9%) - 20% l
0

v

-10 -40

',
e B W |

I S o o 1 F

(= 100%)

-40
{i 100%‘1:}

e, LR F & = e



Hungary

Scotland

Ireland
France

France

Netherlands

Italy
Switzerland

Switzerland

Denmark

l 1 |
Jul-02 Jan-03 Jul-03 Jan-04 Jul-04 Jan-05

GreenGrass sites
Mean Diurnal NEE variation

(umol CO, m2s1)



Measuring fluxes: Carbon cycling In
grazed grassland
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GHG sources and sinks In grasslands
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Average NEE, NBP, NGHGE and
NGHGB over GreenGrass sites.

I
|

NEE -

NGHGE -

NBP -

NGHGB +

-400 -300 -200 -100 0 100
gCO,-Ceq m= yr’

Results are means xconfidence interval of nine sites and over 2 years per site.
From: Soussana et al. (2007)



GHG balance (tC—eqg hal)

Carlow & Wexford pasture C balance
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Spatial distribution of NBP of grasslands
INn Europe (data upscaling)
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A word of caution!

* The existence of the above and other real-life
complexities will render market-based C-trading
schemes involving pastures, exposed to the risks
of complicated, ill-conceived, ill-understood,
poorly regulated financial instruments and
arrangements that are replete with opportunity
for fraudulent scams and inappropriate diversion
of community wealth to the personal fortunes of
scheme managers and traders, while not
delivering the scheme objectives, reminiscent of
those involved in the recent Global Financial
Crisis (Roger M Gifford).



In conclusion: Some key questions

What are the chemical and biological
processes that move carbon into long-
term storage In grasslands?

Can these processes be managed?

Can the slow accumulation of C In

grassland solls be detected within periods
of less than a decade?

Can we reduce uncertainty?
Can this be done on a global scale?
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