Biochar (2020) 2:121-134
https://doi.org/10.1007/s42773-020-00035-5

ORIGINAL ARTICLE t')

Check for
updates

Biochars and their magnetic derivatives as enzyme-like catalysts
mimicking peroxidases

Ivo Safarik'2® . Jitka Prochazkova' - Eva Baldikova' - Hans-Peter Schmidt® - Witold Kwapinski* - Ivo Medrik? -
Petr Jakubec? - Mirka Safarikova' - Kristyna Pospiskova?

Received: 25 June 2019 / Accepted: 8 January 2020 / Published online: 10 February 2020
© Shenyang Agricultural University 2020

Abstract

Various materials have been extensively investigated to mimic the structures and functions of natural enzymes. We describe
the discovery of a new catalytic property in the group of biochar-based carbonaceous materials, which are usually produced
during biowaste thermal processing under specific conditions. The tested biochars exhibited peroxidase-like catalytic activ-
ity. Biomaterial feedstock, pyrolysis temperature, size of resulting biochar particles or biochar modification (e.g., magnetic
particles deposition) influenced the peroxidase-like activity. Catalytic activity was measured with the chromogenic organic
substrates N,N-diethyl-p-phenylenediamine (DPD) or 3,3",5,5'-tetramethylbenzidine (TMB), in the presence of hydrogen
peroxide. Magnetic biochar composite was studied as a complementary material, in which the presence of iron oxide particles
enhances catalytic activity and enables smart magnetic separation of catalyst even from complex mixtures. The activity of the
selected biochar had an optimum at pH 4 and temperature 32 °C; biochar catalyst can be reused ten times without the loss of
activity. Using DPD as a substrate, K, values for native wood chip biochar and its magnetic derivative were 220+ 5 pmol L™
and 690 + 80 pmol L™', respectively, while Vinax Values were 10.1+0.3 pmol L™" min~" and 16.1+0.4 pmol L™ min~",
respectively. Biochar catalytic activity enabled the decolorization of crystal violet both in the model solution and the fish
pond water containing suspended solids and dissolved organic matter. The observed biochar enzyme mimetic activity can
thus find interesting applications in environmental technology for the degradation of selected xenobiotics. In general, this
property predestines the low-cost biochar to be a perspective supplement or even substitution of common peroxidases in
practical applications.
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DPD N, N-diethyl-p-phenylenedi-
amine

GCE Glassy carbon electrode

GO Graphene oxide (r—reduced)

GQDs Graphene quantum dots

HRP Horseradish peroxidase

10P Magnetic iron oxide particles
prepared by microwave-
assisted synthesis

Michaelis constant

NPs Nanoparticles

NRs Nanorods

TMB 3,3',5,5'-tetramethylbenzidine
Vinax Maximal reaction velocity
WK, IM biochar suppliers (detailed

info. in Table 1)

1 Introduction

The current trend of chemical and biotechnology industries
is the supports greener, environmentally-friendlier and more
sustainable catalytic processes. Catalysts may be classified
as either homogeneous or heterogeneous. Homogeneous
catalysis uses soluble catalysts in the same phase with reac-
tants, while heterogeneous catalysis occurs at the interface
of two phases with the catalyst in a different phase from
the reactants. Possible bridges between these approaches
(“semi-heterogeneous” catalysis, with nanoparticles as an
example), have been discussed (Astruc et al. 2005). An
important step during heterogeneous catalytic processes is
the possibility of an easy catalyst recycling after the reac-
tion and its reusability in the next cycle. This is a substan-
tial benefit. Heterogeneous catalysts have, therefore, obvious
advantages in regard to environmental impacts and sustain-
able developments. Bio-based catalysis employing variety
of enzymes is of special interest; solid-phase biocatalysts
can be economically tailored on large scale applications in
various areas of biotechnology, food technology and envi-
ronmental technology (Bilal et al. 2017; Chuah et al. 2017,
Varma 2016).

Various compounds including biomolecules, dendrim-
ers, polymers, porphyrins, metal complexes or cyclodextrins
have been studied to imitate the functions and structures of
natural enzymes (Wei and Wang 2013). Compared to natu-
ral enzymes, enzyme-like systems (also known as pseudo-
enzymes or artificial enzymes) may provide enormous
advantages in terms of easy preparation, low cost, better
thermal stability, pH tolerance and long-term storage.

Discovery of the peroxidase-mimetic activity of ferro-
magnetic nanoparticles in 2007 (Gao et al. 2007) inspired
the investigation of other potential peroxidase-like sys-
tems based on metallic and carbonaceous (nano)materials

or their mixtures. Gold nanoparticles (Deng et al. 2016),
ceria nanorods (Tian et al. 2015), cupric oxide nanoparticles
(Chen et al. 2012), Cu** ions (Zheng et al. 2016), diverse
bimetallic nanoparticles (Jiang et al. 2016; Zhang et al.
2015), FeVO, nanobelts (Yu et al. 2016), iron phosphate
microflowers (Wang et al. 2012b) and many other nanoma-
terials have been successfully used to catalyze peroxidase
substrates oxidation in the presence of H,O, (Wei and Wang
2013).

The level of peroxidase-like activity can be significantly
altered with appropriate modification or functionalization.
It was observed that Fe;O,—Au nanoparticles exhibited bet-
ter catalytic properties than the pure Fe;O, aggregates (Sun
et al. 2013), while unmodified Au nanoparticles had higher
activity than the amino-modified or citrate-capped ones
(Wang et al. 2012a).

In addition, size and shape of nanoparticles considerably
influence the enzyme-like activity, as shown in the catalytic
activity of Fe;O, nanoparticles which increased with the
reduction of nanoparticle size (Peng et al. 2008). However,
when the size and shape dependence of MnFe,0, parti-
cles were studied, the peroxidase-like activity was as fol-
lows: 4 nm (spherical) > 18 nm (plate-like) > 27 nm (near
cubic) > 16 nm (spherical) (Peng et al. 2015). Shape studies
were also carried out on CoFe,0, particles, where the level
of peroxidase-like activity in the order of spherical > near
corner-grown cubic > starlike > near cubic > polyhedron
was observed; this order was closely related to their particle
size and crystal morphology (Zhang et al. 2015). Also the
shape of Fe;O, nanoparticles influenced their peroxidase-
mimetic properties, following the order sphere > cube > octa-
hedron > hexagonal plate, which was related to the surface
Fe(II)/Fe(III) ratios or crystal planes (Wan et al. 2016).

Magnetic nanoparticles of magnetite or maghemite, as an
inner part of a spherical biomacromolecule magnetoferritin
surrounded by a protein shell, also exhibited peroxidase-
like activity, which increased with increasing loading factor
determining the iron content (Melnikova et al. 2014).

Peroxidase-like systems can be utilized in diverse areas
of bioscience, medicine and environmental technology. New
types of peroxidase-mimetic (nano)particles have been suc-
cessfully employed as a component of biosensors for the
detection of cancer (Tian et al. 2015; Zheng et al. 2016),
glucose (Ding et al. 2016), H,0, (Qiao et al. 2014), heavy
metal ions (Chen et al. 2015), cholesterol (Hayat et al. 2015)
and pathogenic bacteria (Jiang et al. 2016; Park et al. 2015),
as well as, for degradation of xenobiotics (Guo et al. 2015;
Mu et al. 2016; Wan et al. 2016), or for inhibition of bacte-
rial growth and biofilm elimination (Gao et al. 2014).

Also carbon-based materials, including graphene-based
nanomaterials (Garg et al. 2015), graphene quantum dots
(Sun et al. 2015), helical carbon nanotubes (Cui et al. 2011),
carbon nanotubes with self-assembled hemin (Zhang et al.
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2013), carbon nanodots (Safavi et al. 2012; Zhu et al.
2014), carboxyfullerenes (Li et al. 2013a) or hydrophilic
mesoporous carbon (Huang et al. 2013) often exhibit per-
oxidase-like activity.

Exceptional interest in nanozymes resulted in several
extended review papers covering in detail their classifica-
tion, catalytic mechanisms, activity regulation and applica-
tions in biosensing, environmental protection, disease treat-
ments and other applications (Golchin et al. 2017; Huang
et al. 2019; Wu et al. 2019).

Recently, biochar produced by pyrolysis of agricultural
waste has become an intensively studied carbon-based
material. Biochar production represents a typical example
of a circular bio-economy process. The produced biochar
is mainly used in agriculture as an efficient soil amendment
(El-Naggar et al. 2019a, b) or as an adsorbent for waste water
treatment (Oliveira et al. 2017; Qambrani et al. 2017). How-
ever, biochar can be also used as a catalyst or microbial fuel
cell electrode (Lee et al. 2017). Cu(Il)-polluted biomass was
converted into an environmentally benign Cu nanoparticle-
embedded biochar composite exhibiting cyanobacteria inhi-
bition (Li et al. 2019).

Based on the previous research results associated with
the peroxidase-like activity of carbon-based materials,
this study was targeted to investigate possible peroxidase-
mimetic activity also in the group of biochar-based materi-
als originating from pyrolysis of plant biomass. No similar
study dealing with peroxidase-like activity of biochar-based
materials has been published yet. Different levels of perox-
idase-mimetic activity were obtained for biochars produced
from various biomass feedstock under different pyrolysis
conditions. Furthermore, the influence of subsequent mag-
netic modification of biochars with microwave-synthesized
magnetic iron oxide nano- and microparticles (Safarik et al.
2016; Safarik and Safarikova 2014) was tested. This modi-
fication led to magnetically responsive composites with
deposited magnetic particles and their aggregates on the sur-
face of native biochar, exhibiting increased peroxidase-like
activity. Basic characterization of biochar peroxidase-like
activity is described in this paper, based on the testing of
various types of biochars and their catalytic reaction towards
chromogenic organic substrates specific for peroxidase
enzymes. A practical application of biochar-based materi-
als in environmental technologies was demonstrated by the
catalytic organic dye decolorization.

2 Materials and methods
2.1 Materials

Biomass feedstocks used for the biochar production, the bio-
char production technology (pyrolytic units), and pyrolysis

@ Springer

reaction conditions (temperature and duration of pyrolytic
process, special atmosphere) are presented in Table 1.
Extensive characterization of the biochars BC1-BC3 and
LIM1-LIM3 has been published (Bachmann et al. 2016;
Trazzi et al. 2016). Several biochar samples were prepared
under laboratory conditions in a furnace (samples OL1-8).
In addition, two industrial biochar samples were used during
our experiments (samples MC and IND). Individual biochars
were ground if necessary and sieved to obtain a fraction
between 100 and 250 um. Selected biochar samples were
magnetically modified using microwave-synthesized mag-
netite as described previously (Safarik et al. 2016; Safarik
and Safarikova 2014). a-Cellulose powder, N,N-diethyl-
p-phenylenediamine sulfate salt (DPD), crystal violet (CV;
C.I. 42555), 30% (w/w) hydrogen peroxide solution and
disodium hydrogen phosphate were obtained from Sigma-
Aldrich, Czech Republic. TMB substrate solution (TMBLOI,
containing hydrogen peroxide, chromogene 3,3',5,5'-tetra-
methylbenzidine and stabilizing agents) was supplied by
Enzymo Plus, Czech Republic. Common chemicals (e.g.,
ferrous sulfate heptahydrate, sodium hydroxide, ascorbic
acid (AA), sodium citrate monohydrate, etc.) were obtained
from Lach-Ner and crystal violet from Lachema, Czech
Republic. All chemicals were analytical reagents grade and
were used without further purification. All stock solutions
for electrochemical measurements were prepared with deion-
ized water (18 MQ cm™"). Water samples from three typical
fish farming ponds in South Bohemian and South Moravian
regions (Zdrahanka pond, 48.9990175 N, 14.3983494 E,
pH 7.3, COD¢, 52.5 mg L~!; Klimsak pond, 49.4085415 N,
16.6343234 E, pH 8.1, COD(, 43.8 mg L~!; Karolin pond,
49.4076739 N, 16.6614586 E, pH 8.0, COD, 50.2 mg L")
were used to study crystal violet decolorization.

2.2 Determination of peroxidase-like activity

Ten milligram of sample (various types of biochar) was
mixed with 3400 pL of distilled water and preincubated
for 2 min. Then, 400 pL of DPD substrate (12.5 mM
stock solution in water) and 200 pL of hydrogen per-
oxide substrate [2% (v/v) stock solution in water] were
added. Reaction mixture was shortly mixed on a vortex
and incubated at 22 °C for 4.5 min on an automatic rota-
tor (20 rpm). The reaction mixture was then immediately
filtered through a filter paper and the filtrate was col-
lected from the first 30 s of filtration. Finally, the absorb-
ance of the filtrate, containing a purple-colored reaction
product, was measured spectrophotometrically at 551 nm.
Using a TMB substrate, 10 mg of preincubated sample in
2000 pL water was mixed with 2000 pL of a commercial
TMB solution and incubated for 4.5 min on the rotator,
then separated by centrifugation. Increasing absorb-
ance of the blue—green colored product was monitored



Biochar (2020) 2:121-134

125

spectrophotometrically at 655 nm. In both cases, corre-
sponding blanks (the same reaction mixture and condi-
tions but without biochar) were subtracted from measured
absorbance values. Peroxidase-like activity was expressed
as an absorbance of the reaction mixture at 551 nm using
DPD substrate. Measurements were performed at least
in triplicate.

To study the effect of pH on the peroxidase-like activ-
ity of biochars, Britton—Robinson buffer, pH 2-12, was
used instead of water.

To study the operational stability of biochar catalyst,
the reaction was repeated ten times with the same sample
(washing of sample with water after each cycle; short
centrifugation used for biochar separation).

The study of peroxidase-like kinetics was performed
using Michaelis—Menten model, DPD concentration was
in range 313-5000 umol L~!, with constant hydrogen
peroxide concentration [0.5% (v/v) in reaction solution].

To verify the role of the reactive oxygen species in the
peroxidase-like reaction, ascorbic acid was added into the
standard reaction mixture (in concentration range from
0.15to 1.5 mmol L™1).

2.3 Decolorization of organic dye

Ten milligrams of biochar sample was mixed with 5 mL
of organic dye water solution (crystal violet, 50 pg mL™}),
followed immediately by the addition of hydrogen perox-
ide [to final concentration 1% (v/v) in solution]. Reaction
mixture was mixed on automatic rotator for appropriate
time (e.g., 5-20 min). Then, 1 mL of reaction mixture was
collected and centrifuged. Decrease of the crystal violet
dye concentration was observed spectrophotometrically,
measuring the absorption spectrum of the residual dye
in the supernatant (maximum at 591 nm). Also control
sample with added water instead of hydrogen peroxide
was tested for comparison, as well as the crystal violet
dye solution with added hydrogen peroxide (without bio-
char sample). To verify the role of the reactive oxygen

Fig.1 Scheme of biochar prepa-
ration and its peroxidase-like
activity determination using
DPD and TMB co-substrates

in the presence of hydrogen
peroxide, followed by spectro-
photometric measurement of the
colored reaction product (color
online)

biomass

—

biochar

species in the decolorization reaction, ascorbic acid was
added into the standard reaction mixture (1.12 mmol L™1).

2.4 Electrochemical measurements

Cyclic voltammetry measurements (CVMs) were per-
formed using a Metrohm Autolab PGSTAT 128N instrument
(Metrohm Autolab B.V., The Netherlands). Obtained data
were evaluated with incorporated NOVA software package
(version 1.11.2). The three-electrode setup [working elec-
trode: glassy carbon electrode (GCE, 3 mm in diameter,
2Theta Company: Czech Republic); auxiliary electrode:
platinum wire; reference electrode: Ag/AgCl (3 mol L™
KCI)] was employed as a suitable candidate for electro-
chemical characterization of biochar sample. Citrate—phos-
phate buffer (¢=0.2 mol L™!; pH 3.8) was used as a sup-
porting electrolyte for all measurements. All experiments
were carried out at room temperature (22 +2 °C). Glassy
carbon electrodes were first polished on wet silicon carbide
paper using 1 and 0.05 pm Al,O; powder sequentially and
then washed in water and ethanol, respectively. Modification
of GCE working electrode was performed by drop-coating
technique: 10 pL drop of biochar suspension (5 g L™!) was
coated onto the GCE surface and allowed to dry at ambient
temperature to form a thin film.

3 Results and discussion
3.1 Determination of peroxidase-like activity

To detect the peroxidase-like activity of 16 types of biochar
(see Table 1), two typical peroxidase chromogenic co-sub-
strates were tested, namely, N, N-diethyl-p-phenylenediamine
(DPD) and 3,3",5,5'-tetramethylbenzidine (TMB). Hydrogen
peroxide—based oxidation of DPD leads to the formation
of the radical cation DPD*, which produces a stable purple
color with absorption at 551 nm. The H,0, oxidation of
TMB leads to the formation of a blue reaction product with
absorption at 655 nm. All biochar types tested caused color

-

+ DPD substrate
. “p HIDZ

pyrolysis . “peroxidase-like”
N reaction

+ TMB substrate

H,0, =
spectmph otometric
measurement
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change of both peroxidase co-substrates (see Fig. 1). For
subsequent experiments only DPD co-substrate was used.

To evaluate the results of peroxidase-like activity of bio-
chars, measured absorbance values of the colored reaction
products were used. However, units typical for standard
expression of enzyme activity are not accurate for biochar
studies due to their adsorption properties, thus partially
decreasing the amount of free reaction products available for
photometric measurements. Adsorption properties of bio-
char will be discussed in the following part. Therefore, only
arbitrary values of specific enzyme-like activity of biochar
samples are mentioned as the values expressing the overall
enzyme-like activity not taking into account the possible
adsorption of the reaction product.

Table 2 shows average values of peroxidase-like activ-
ity (using DPD co-substrate, expressed as absorbances at
551 nm) of the tested biochar samples and calculated theo-
retical values of specific enzyme-like activity of biochars
(expressed in nkat per mg of biochar). In some cases, great
variability of absorbances was observed in repeated meas-
urements of single biochar samples which may be explained
by biochar microheterogeneity. In general, biochar-based
materials are not considered as homogeneous and unique
materials (EBC 2019). General biochar types are based on
the feedstock used, pyrolysis conditions and post-pyrolysis
treatment, which leads to microheterogeneity due to natural
variations within the biomass feedstock (e.g., mineral con-
tent and organic constitution) as well as heat and gas transfer
variations within pyrolyzed particles. For this reason, rather
high standard deviations are observed. However, variations
in peroxidase-like activities of different biochars due to dif-
ferent feedstock and pyrolysis parameters predominated.

In principle, different types of biochar with peroxidase-
mimicking activities can be roughly classified into two types.
For the first type, the peroxidase-like activities are solely
based on the carbon structure of biochars. For the second
type, the activities are derived from the catalytic materials
assembled into biochar (especially metal ions). Based on the
fact that biochar prepared from chemically pure cellulose

exhibited peroxidase-like activity, it can be concluded that
the peroxidase-mimicking activity is primarily caused by
biochar itself, and not due to the presence of accompany-
ing metal residues. However, potential effect of metal ions
naturally present in biochars of plant origin (Bachmann et al.
2016) cannot be excluded for specific biochar types (e.g.,
biochars prepared from plants growing at localities with high
concentration of heavy metal ions).

Due to the fact that biochar-based materials exhibit
adsorption properties (Safarik et al. 2016; Sewu et al.
2017), possible adsorption of the colored reaction product
on biochars need to be also considered. To test the ability of
biochars to adsorb the oxidized co-substrate DPD, samples
with lower peroxidase-like activity were tested by incubation
with the purple-colored reaction product formed by sam-
ple OL6. Each of the tested biochar samples (OL1-5 and
OL7-8) exhibited adsorption of the oxidized co-substrate
in the range between 18% and 52% (see Table 3) using the
following reaction conditions: 10 mg of biochar, 4 mL of
oxidized DPD (A55;=0.79), 4.5 min incubation at 22 °C,
30 s filtration, 3 measurements. Thus, it has to be taken into
account that the low measured peroxidase-like activity of
various biochar samples can also be caused by their adsorp-
tion properties. Nevertheless, the activity of all tested bio-
char-based materials was clearly confirmed by the described

Table 3 Adsorption of oxidized co-substrate DPD on selected types
of biochar samples

Sample Adsorbed amount of oxi-
dized DPD on biochar (%)

OL1 30+1

OL2 26+1

OL3 28+4

OL4 19+2

OL5 42+

OL7 52+

OL8 18+

Table2 Average values
of peroxidase-like activity
(expressed as Ass;, using DPD

Sample Ass;

Arbitrary specific
enzyme-like activity (nkat

Sample Ass; Arbitrary specific enzyme-

like activity (nkat mg™")

as co-substrate) and arbitrary mg™)

values of specific activity of the BC1 0.639+0.139 0.0406

tested biochar samples BC2  0.502+0.051 0.0319
BC3 0.953+0.106 0.0605
LIM1 0.121+£0.014 0.0077
LIM2 0.296+0.044 0.0188
LIM3 0.605+0.032 0.0384
IND 0.584 +£0.067 0.0371
MC 0.253+0.013 0.0161

OL1 0.080+0.004 0.0051
OL2 0.230+0.024 0.0146
OL3 0.155+0.001 0.0098
OL4 0.100+0.009 0.0063
OL5 0.055+0.007 0.0035
OL6 0.790+0.087 0.0502
OL7 0.125+0.005 0.0079
OL8 0.158+0.013 0.0100
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activity measurements. As already mentioned, the arbitrary
enzyme-like activity values were not corrected considering
these adsorption effects because the reaction product adsorp-
tion is highly individual for any biochar type.

The study of peroxidase-like kinetics is fundamental and
necessary to understand the enzyme-like characteristics of
biochars, and the enzyme kinetic constant K, (Michaelis
constant) and V.. (maximal reaction velocity) are one of
the most important factors for the evaluation of the enzyme
and enzyme-like materials efficiency (lower K, values are
connected with higher affinity to substrate). The peroxidase-
like behavior of the typical biochar (BC1, prepared from
wood chips) and its magnetically modified form (MBC1;
see Chapter 3.5) was examined at room temperature using
DPD as a chromogenic substrate. Absorbance data were con-
verted to concentration by the Beer—Lambert Law using a
molar absorption coefficient of 21,000 M~! cm™ for DPD-
derived oxidation product (Bader et al. 1988). Figure S1
demonstrates typical Michaelis—Menten curves (after fitting)
for peroxidase-like catalytic reaction of samples BC1 and
MBCI. The obtained values of K, for chromogenic sub-
strate DPD (native biochar BC1: K, =220+ 5 pmol L™},
Viax = 10.1£0.3 pmol L' min™'; magnetically
modified biochar MBCI: K, =690 + 80 pmol L7,
Vo= 16.1£0.4 pmol L™! min™") were compared with
analogous data for horseradish peroxidase (HRP, a typical
peroxidase enzyme from oxidoreductases class, EC 1.11.1.7,
widely used in various biochemical and biotechnology
applications) and selected peroxidase-like materials (see
Table 4). The obtained values are comparable with results
from selected published studies. Examples demonstrate the
dependence of K, on the type of material, particle shape
and size, and also on the decoration of target materials by
other particles.

Various types of carbon nanomaterials exhibit intrinsic
peroxidase-like activity. Mechanisms of the catalytic reac-
tions have not been sufficiently clarified. One of the possible
mechanisms has been described by Sun et al. (2015). Dur-
ing their studies with graphene quantum dots (GQDs), they
have observed their high enzyme-like activity. The studied
GQDs were mainly covered with carboxylic, carbonyl and
hydroxy groups on their surface. After selective deactivation
of these oxygen groups by specific titrants, they identified
their different functions; the -C=0 groups are present in
catalytically active sites, the O=C—O- groups are part of
substrate-binding sites and -C—OH groups can be involved
in the inhibition of the catalytic activity (Sun et al. 2015).
Based on the fact that biochar can contain similar oxygen
containing groups, the enzyme-like mechanism both in bio-
chars and GQDs can be similar. Another study focuses on the
role of persistent free radicals in H,0, activation by biochar,
which can be implied in the degradation of organic contami-
nants. Fang et al. investigated that hydrogen peroxide can be

Table 4 Values of Michaelis constant (K,) for selected peroxidase-
like materials and horseradish peroxidase

Catalyst Chromogenic K, References
substrate (CS) [mmol L™']
for CS
Enzymes
HRP DPD 0.696 Chang et al. (2009)
HRP TMB 0.434 Gao et al. (2007)
HRP TMB 0.415 Tian et al. (2015)
HRP TMB 0.501 Lietal. (2013a)
HRP TMB 0.400 Peng et al. (2008)
HRP TMB 0.400 Cui et al. (2011)
HRP TMB 0.275 Song et al. (2010)
HRP TMB 0.580 Wu et al. (2014)
Metal oxide/metal nanoparticles
Fe;0, NPs TMB 0.098 Gao et al. (2007)
Fe;0, aggre- TMB 0.179 Sun et al. (2013)
gates
Fe;04 NPs TMB 0.270 Peng et al. (2008)
Fe;0, NPs DPD 0.627 Chang et al. (2009)
Fe;0,~Au T™B 0.011 Sun et al. (2013)
MnFe,0, NPs TMB 0.112 Peng et al. (2015)
Spherical (4 nm) 0.242
Plate-like 0.304
(18 nm) 0.543
Spherical
(27 nm)
Spherical
(16 nm)
FeVO, TMB 0.691 Yu et al. (2016)
NRs of ceria TMB 0.147 Tian et al. (2015)
(porous)

Carbon-based materials and derivatives

Cyo-carboxy- TMB 0.233 Liet al. (2013a)
fullerene
Helical CNTs TMB 0.020 Cui et al. (2011)
Au NPs-SW TMB 0.480 Haider et al. (2015)
CNTs
ZnO NPs-CNTs ABTS 0.500 Hayat et al. (2015)
GQDs ABTS 10.4 Sun et al. (2015)
GQDs-Fe;0, TMB 0.050 Wu et al. (2014)
GO-Fe;0, TMB 0.080 Wu et al. (2014)
GO-COOH TMB 0.024 Song et al. (2010)
rGO TMB 0.340 Xie et al. (2013)
rGO-Co;0, TMB 0.190 Xie et al. (2013)
Biochar BC1 DPD 0.220 This paper
Biochar MBC1  DPD 0.690 This paper

activated by biochar, which is connected with the production
of hydroxyl radicals to degrade 2-chlorobiphenyl. Persistent
radicals present in biochar are the main contributor to the
formation of hydroxyl radicals (Fang et al. 2014). Recent
advances in biochar-based catalysis, applicable for pollution
remediation, are summarized in a review (Wang et al. 2019).
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To verify the possible role of reactive oxygen species
associated with the peroxidase-like reaction of biochar,
experiments using ascorbic acid (AA) added to the reac-
tion mixture (as a scavenger of hydroxyl and superoxide
radicals) have been performed (Dong et al. 2018). In our
study, we have also tested possible quenching of these radi-
cals by ascorbic acid. Catalytic activity of biochars was
affected (inhibited) by the presence of AA in a different way,
according to the type of biochar (the reaction was inhib-
ited at different intensities, in connection with the amount
of radicals formed). The effect of various concentration of
ascorbic acid on peroxidase-like reaction was demonstrated
on BC1 sample (Fig. S2). Based on this fact, the genera-
tion of radicals also plays an important role in the catalytic
mechanism. We have further performed electrochemical
measurements (cyclic voltammetry) to get more informa-
tion about redox processes and radicals after interaction of
biochar with hydrogen peroxide in buffer solution, results
will be discussed in the Subchapter 3.6.

For each solid catalyst, reusability is an important prop-
erty for practical utilization from an economical point of
view. Using MC biochar, reaction with DPD substrate was
repeated ten times without the loss of catalytic activity.

3.2 Effect of pyrolysis conditions on peroxidase-like
activity of biochar

An interesting dependence was observed for Mis-
canthus X giganteus biochar prepared at different tem-
peratures at constant pyrolysis time (LIM1-3). Increase

of pyrolysis temperature led to the significant increase in
peroxidase-like activity (see Fig. 2a). A similar effect was
also detected for the biochars prepared from spent coffee
grounds, where the measured activity of the sample pyro-
lyzed at 700 °C was approximately 14-times higher than the
activity of the sample prepared at 600 °C.

In the case of Miscanthus biochar the increase of pyroly-
sis temperature led to the increase of both the carbon con-
tents (63.6%; 86.3% and 90.4%) and BET surface area (6.39;
81.0 and 244 m* g™ ') for the temperatures 300 °C, 500 °C
and 700 °C and pyrolysis time 60 min (Trazzi et al. 2016).
The selected atomic ratios (i.e., H/C and O/C) sharply
decreased, suggesting that with increasing charring tem-
perature, the relative degree of aromaticity (H/C ratio) and
polarity (O/C ratio) markedly decreased, which could be
attributable to the development of functional groups (Li
et al. 2013b; Trazzi et al. 2016). It has been also observed
by other authors that heteroaromatic N-structures are formed
during the pyrolysis process; it is expected that N-bound in
heterocyclic compounds is chemically stable (Singh et al.
2014).

A detailed study of rice straw and rice bran biochar pyro-
lyzed at different temperatures using solid-state '*C NMR
spectroscopy has been performed recently (Li et al. 2013b).
Development of functional groups during the charring pro-
cess was observed; their development rate followed the fol-
lowing order: fused-ring aromatic structures > aromatic C-O
groups > aliphatic O-alkylated (HCOH) carbons ~ anomeric
O-C-O carbons (Li et al. 2013b). Increased number of oxy-
gen containing groups in the biochar pyrolyzed at increased

Fig.2 a Dependence of peroxi- a 08 b 93
dase-like activity of Miscanthus
x giganteus biochar (LIM1- 06 - P
3) on the temperature of the 0.2 1
pyrolysis treatment at constant a o o
pyrolysis time. b Dependence < <
of peroxidase-like activity of * 0.1 A
maize cob biochar (MC) on the 02+
size of its particles. ¢ Depend- *
ence of peroxidase-like activity 0 . : : 0 . T
of wood chip biochar BC1 on 100 300 500 700 900 <100 100 - 250 250 - 400
the reaction temperature. d
Dependence of peroxidase- Pyrolysis temperature (°C) Particle size (um)
like activity of the wood chip d
biochar BC1 on the pH value of ¢ . 04
P
the reaction mixture o } % s
02y $%§
*
. 06 1 + -
2 ) B 02+ Z
< 04 s < * i
o 01{ ¢
*
o T T T T T T 0 T T T T ? *+
0 10 20 30 40 50 60 70 0 2 4 6 8§ 10 12 14
Reaction temperature (°C) Reaction pH
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temperature together with the increased surface area, could
explain the higher enzyme-like activity observed in Mis-
canthus X giganteus biochar pyrolyzed at higher tempera-
ture. It has to be noticed, however, that biochar pyrolyzed at
very high temperatures did not contain measurable amounts
of oxygen containing groups, but its peroxidase-like activ-
ity was very high (sample IND; its FTIR measurement has
not detected any peak corresponding to oxygen containing
groups similarly to other biochars prepared at high tempera-
tures (Asada et al. 2004). Most probable alternative mecha-
nism has to be suggested for carbon rich, oxygen depleted
biochars.

3.3 Effect of particle size on peroxidase-like activity
of biochar

The biochar peroxidase-like activity also depends on the par-
ticle size, as documented in Fig. 2b for maize cob (MC) bio-
char. As expected, smaller biochar particles exhibit higher
activity. A similar situation was also observed in the case
of nanomaterials mimicking peroxidases; this phenomenon
may be due to the smaller particles having a greater surface-
to-volume ratio to interact with their substrates. This obser-
vation suggests that selective fabrication of peroxidase-like
materials with different size and shape is very important
to modulate their catalytic activities (Jv et al. 2010; Peng
et al. 2015).

3.4 Effect of reaction conditions on peroxidase-like
activity of biochar

The influence of the reaction temperature on the oxidation of
DPD catalyzed by the woody biochar BC1 was investigated
in the range from 4 °C to 62 °C (Fig. 2¢). The oxidation of
DPD reached the maximum value at temperature ca 32 °C;
relatively high activity (more than 77%, taking maximum
activity value as 100%) can be observed between 4 °C and
42 °C. However, higher values of the reaction temperature
led to the substantial decrease in the enzyme-like activity.
Similar temperature optima were also observed for some
other peroxidase-like materials, such as CoFe,O, nanopar-
ticles (Zhang et al. 2015), magnetic iron oxide nanoparticles
(Gao et al. 2007), hemin bound to carbon nanotubes (Zhang
et al. 2013), etc. Such behavior seems to be general for both
real peroxidases and peroxidase-like materials.

The peroxidase-like activity of biochars also depends on
the pH value of the reaction mixture. Figure 2d shows that
the highest activity was observed at pH 4 for the woody
biochar BC1. When compared with other natural catalysts
(enzymes) or enzyme-like materials, the same or very simi-
lar pH value was also optimal for horseradish peroxidase
(Jiao et al. 2012), V,05-ordered mesoporous carbon com-
posite (Han et al. 2015), CoFe,0, nanoparticles (Zhang et al.

2015), ceria (CeO,) nanoparticles (Jiao et al. 2012) or hemin
bound to carbon nanotubes (Zhang et al. 2013). Also in this
case we can say that similar behavior has been found very
often, both for natural and synthetic peroxidases.

3.5 Effects of magnetic modification of biochar
on its peroxidase-like activity

Based on the fact that the magnetic iron oxide particles also
exhibit peroxidase-like activity, magnetically responsive
biochar derivatives were prepared and tested (Safarik et al.
2016). As presented in Table 5, the binding of microwave-
synthesized iron oxide magnetic particles on biochar surface
led to the significant increases in peroxidase-like activities
for selected biochar samples (BC1, IND and OL7). All mag-
netically modified biochars were prepared using the same
procedure, thus leading to a similar amount of magnetic iron
oxide particles bound on the biochar surface. That is why the
differences in peroxidase-like activities between native and
magnetically modified biochars were similar (ca. 0.24-0.28
absorbance unit).

Magnetic modification of biochar is important from two
points, namely, the possibility of simple magnetic separa-
tion of magnetic biochar from various environments, and
the addition of new peroxidase-like activity to the composite
material. Enzyme kinetic constants K, and V. for both
native biochar BC1 and its magnetic derivative MBC1 are
given in Chapter 3.1 and Table 4. Similarly to two enzymes
acting to one substrate (Dixon and Webb 1964), the V..
value for magnetic biochar was higher than V. for native
biochar.

3.6 Electrochemical measurements

Cyclic voltammetry measurement (CVM) was employed to
investigate the peroxidase-like activity of biochar sample
(see Fig. S3). A set of CVMs was recorded by sweeping the
potential range from 0.0 to — 1.0 V at a constant scan rate
of 20 mV s~! using a bare GC electrode or a GC electrode
modified with a tested sample in the absence (dashed lines)
or in the presence (area) of 4 mmol L~! hydrogen peroxide.
As can be seen in Fig. S3, the peak of H,O, decomposi-
tion recorded at E=—1.34 V for an electrode modified with
biochar is significantly higher compared to the response of

Table 5 Comparison of peroxidase-like activities of native and mag-
netically modified biochars

Sample Ass; (native) Ass; (magnetic)
BC1 0.639+0.139 0.919+0.089
IND 0.584+0.067 0.826 +0.205
OL7 0.125+0.005 0.407+0.011
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the unmodified electrode indicating the potential of biochar
to serve as a successful catalyst for the decomposition of
the target molecule (H,0,). As a single reduction peak is
observed, one can conclude that the reaction mechanism
obeys the reported 2e~, 2H* reduction pathway according
to the following equations (Cai et al. 2018):

H,0, + H* + ¢” > OH,

g + HO (1

OHgp) + H" +¢7 —> H,0 @

A small shoulder located at E=—0.43 V supports this
hypothesis. Hydrogen peroxide undergoes one proton and
one electron exchange reaction to form an adsorbed hydroxyl
radical and water as shown in Eq. (1). These products fur-
ther undergo another one proton and one electron reaction

[Eq. (2)] resulting in a two peaks response.

3.7 Potential technological application of biochar
peroxidase-like activity

It is well known that enzyme based technologies have been
successfully used for bioremediation of recalcitrant xeno-
biotic compounds from the natural environment. Different
types of microbial and plant enzymes exhibiting bioremedia-
tion activities have been isolated and used. Enzyme immobi-
lization and genetic engineering approaches led to enzyme
preparations with improved half-life, stability and activity.

Horseradish peroxidase is known to be effective in the
removal of a wide spectrum of aromatic compounds (phe-
nols, biphenols, anilines) in the presence of hydrogen perox-
ide and in the degradation, decolorization and precipitation
of important industrial dyes (Ulson de Souza et al. 2007).
Other types of peroxidases from various sources can also be
efficient for other important pollutants removal (e.g., endo-
crine disruptive chemicals, polychlorinated biphenyls, chlo-
rinated alkanes and alkenes, phenoxy alkanoic and triazine
herbicides, chlorinated dioxins and chlorinated insecticides)
(Bansal and Kanwar 2013).

Peroxidase catalyzed degradation of various dyes has
been studied, namely, Remazol Turquoise Blue G and
Lanaset Blue 2R (Ulson de Souza et al. 2007), Remazol
blue and crystal violet (Bhunia et al. 2001) or bromophe-
nol blue and methyl orange (Liu et al. 2006). Inactivation
of the enzyme in the presence of the dye was found to be
the major limitation in potential commercial application of
the technique for effluent treatment in the dye manufactur-
ing industry (Bhunia et al. 2001).

However, recently discovered nanozymes of different
types and their peroxidase mimetics could solve this prob-
lem. They may offer the potential bioremediation ability
towards a broad range of toxic, carcinogenic and hazard-
ous environmental pollutants at low cost (Sharma et al.
2018). Biochar accompanies other carbon materials (e.g.,
carbon nanotubes, graphene derivatives, fullerenes, car-
bon nanohorns or carbon nanodots), where peroxidase-
like activity has been detected recently and used, e.g., for
methyl red, methyl orange, rhodamine B, methylene blue,
orange II or phenolic compound degradation (Sun et al.
2018). Importantly, biochar can be prepared by simpler
processes and in larger quantities in comparison with these
special carbon structures.

In our study, we tested the decolorization of model
water soluble organic dye crystal violet containing a tri-
phenylmethane structure, using two peroxidase mimetics,
namely, biochar (BC1) and microwave-synthesized iron
oxide particles. Both materials react well with typical per-
oxidase substrates in the presence of hydrogen peroxide
(see Fig. 3, left), but only biochar was able to decolorize
crystal violet in the presence of H,0, (see Fig. 3, right).
The decolorization was caused almost exclusively by the
biochar catalytic activity because no visible decoloriza-
tion was caused by hydrogen peroxide itself and no rel-
evant adsorption of dye to biochar was observed under the
selected reaction conditions (Fig. 3, middle).

As was mentioned for the reaction with the DPD sub-
strate, we have also tested the possible quenching of
radicals by ascorbic acid during decolorization reactions.

Fig.3 Comparison of biochar

and iron oxide particles catalytic DPD substrate Cc rysta | violetd ye

properties used for the reaction

with DPD substrate and the

decolorization of crystal violet C+DPD+H 202 CV+H202 C+CV+ HZO C+CV+H 202
dye solution. BCH biochar BC1,

IOP magnetic iron oxide par- BCH |OP BCH 10P BCH 0P

ticles prepared by microwave-
assisted synthesis, C catalyst
(BCH or IOP), DPD N,N-
diethyl-p-phenylenediamine, CV
crystal violet (color online)
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Catalytic activity of biochars was affected (inhibited) by
the presence of AA. This was demonstrated by the decol-
orization of a crystal violet solution by the BC1 sample. In
this case, the generation of radicals also plays an important
role in the catalytic mechanism.

Biochar exhibited catalytic and decolorization activity not
only in distilled water, but also in fish pond water containing
suspended solids and dissolved organic matter. Three typical
pond water samples were analyzed with the same results. As
can be seen in Fig. 4, presenting the results using Zdrahanka
pond water, there was no color change after single addition
of hydrogen peroxide or biochar only to crystal violet solu-
tions (Fig. 4a—c). However, the addition of both biochar and
hydrogen peroxide to crystal violet dissolved in fish pond
water led to total dye decolorization in 10 min (Fig. 4d).

Our experiments clearly show the potential of biochar in
technological applications. In addition, differences in the
specificity of enzyme mimetics can be clearly seen in these
examples. The decolorization of organic dyes by biochar-
based materials in the presence of hydrogen peroxide will
be investigated systematically in a future study.

4 Conclusions

Biochar production represents a typical example of a cir-
cular bio-economy process. Various types of biochar were
prepared by pyrolysis of diverse biomass feedstocks. For
the first time, peroxidase-like activity of biochar-based
materials was detected. All tested samples of biochar
exhibited peroxidase-like activity. Biochars oxidized spe-
cific organic substrates (DPD or TMB) in the presence of

Fig.4 Decolorization of crystal
violet dissolved in distilled
water, untreated fish pond water
and filtered fish pond water
(from left to right) by catalytic
activity of biochar BC1. a Water
solutions of crystal violet; b
water solutions of crystal violet
with the addition of hydrogen
peroxide; ¢ water solutions of
crystal violet with the addition
of biochar; d water solutions of
crystal violet with the addition
of biochar and hydrogen perox-
ide. Incubation time was 10 min
(color online)

hydrogen peroxide and could be used repeatedly at least
ten times without any loss of catalytic activity. Magnetic
modification with iron oxides increased the catalytic activ-
ity of biochar-based composites. In general, differences in
the peroxidase-like activities between biochar samples are
affected by the type of feedstock, pyrolysis temperature
and various modification treatments. Biochar exhibited
catalytic and decolorization activities of crystal violet not
only in distilled water, but also in fish pond water contain-
ing suspended solids and dissolved organic matter.

Based on these findings, it can be concluded that biochar
is a promising alternative material to common peroxidases
for industrial purposes. This material exhibits many advan-
tages; especially, it can be prepared from widely available
biomass waste materials by relatively simple procedures
reducing the costs of resulting materials. Availability of
large quantities of biochar and its better resistance to exter-
nal conditions compared to enzyme biomolecules can also
be very important and useful for industrial applications. The
existing peroxidase-like activity can have interesting appli-
cations in environmental technologies as a part of oxidative
processes or as peroxidase enzyme replacement.

Smart biochar-based materials exhibiting enzyme-like
activities can be considered as the third biochar genera-
tion, following the second generation biochars which are
applied as efficient adsorbents of a broad range of organic
or inorganic compounds and the first generation biochars
that are utilized as soil amendment in agriculture.
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