Biochar studies

Here you will find current studies on biochar

Author: D. Fischer   Paper:

Synergismen zwischen Kompost und Pflanzenkohle für Nachhaltige Bodenverbesserung

Angetrieben durch den Klimawandel und das Bevölkerungswachstum zwingt der zunehmende menschliche Druck auf das Land die Umwandlung von Naturlandschaften in landwirtschaftliche Flächen und Weiden, während gleichzeitig erschöpfende Flächen derzeit landwirtschaftlich genutzt werden (Lal, 2009). Als Folge davon entwickelt sich ein Teufelskreis: weitere Verschärfung des Klimawandels, Bodendegradation, Erosion, Verlust organischer Bodenbestandteile Materie (SOM) und Auslaugung von Nährstoffen.

Author:
Daniel Fischer, Bruno Glaser
Published:
Paper:
Link/Pdf:
http://www.biomastec.com/fileadmin/Sonstiges/InTech-Synergisms_between_compost_and_biochar_for_sustainable_soil_amelioration.pdf

Driven by climate change and population growth, increasing human pressure on land forces conversion of natural landscapes to agricultural fields and pastures while simultaneously depleting land currently under agricultural use (Lal, 2009). Consequently, a vicious circle develops; further aggravating climate change, soil degradation, erosion, loss of soil organic matter (SOM) and leaching of nutrients. Therefore, sustainable concepts for increased food production are urgently needed to lower pressure on soils, in order to reduce or prevent the negative environmental impacts of intensive agriculture. A key for such strategies is the maintenance or increase of SOM level inducing positive ecosystem services such as increased productivity, nutrient and water storage, intact filter capacity, rooting, aeration and habitat for soil organism etc. In summary, SOM improves soil fertility and C storage (C Sequestration). One efficient way to increase SOM level is compost application, produced especially from biomass wastes. During the last decades, attention was paid at the professionalization of composting due to several trends in today's society: On the one hand, growth of livestock breeding and intensification of crop production has occurred while an increasing shortage of resources, i.e. fossil fuels, fossil nutrients stocks and arable land, can be recognized. On the other hand, urbanization and growing population interconnected with an increased amount of waste output is responsible for environmental hazards and pollution. Therefore, composting became an efficient means of waste processing, soil amelioration and general environmental improvement. However, up to now reported C sequestration potential due to compost management is limited in terms of C use efficiency and long-term C preservation even combined with organic farming and no till management. Therefore, new concepts for C sequestration combating against further raise of atmospheric CO2 emissions are urgently needed. One promising option is using the “terra preta concept” combining biochar and composting technologies. This concept could enhance quality and material properties of compost products leading to a higher added value and to a much better C sequestration potential due to the long-term stability of biochar. We hypothesize that composting of biochar together with other biogenous materials containing labile organic matter and nutrients can be an appropriate tool to produce a substrate with similar properties as terra preta such as enhanced soil fertility and C sequestration. Current available literature will be reviewed on these aspects.

Author: J. D. Gomez et. al. (2013)   Paper: British Society of Soil Science

Die Pflanzenkohle-Zugaberate beeinflusst die mikrobielle Vielfalt des Bodens und Aktivität in gemäßigten Böden

Pflanzenkohle (BC) zur Bodenverbesserung ist eine vorgeschlagene Strategie zur Verbesserung der Bodenfruchtbarkeit und zur Eindämmung des Klimawandels. Bevor dies jedoch zu einer empfohlenen Managementpraxis werden kann, muss ein besseres Verständnis der Auswirkungen von BC auf die Bodenbiota benötigt wird. Wir haben den Effekt der Zugaberaten (0, 1, 5, 10 und 20% der Masse) bestimmt.

Author:
J. D. Gomez, K. Denef, C. E. Stewart, J. Zheng, M. F. Cotrufo
Published:
2013
Paper:
British Society of Soil Science
Link/Pdf:
https://onlinelibrary.wiley.com/doi/10.1111/ejss.12097

Biochar (BC) amendment to soils is a proposed strategy to improve soil fertility and mitigate climate change. However, before this can become a recommended management practice, a better understanding of the impacts of BC on the soil biota is needed. We determined the effect of addition rates (0, 1, 5, 10 and 20% by mass) of a fast-pyrolysis wood-derived BC on the extraction efficiency (EE), abundance and temporal dynamics of phospholipid fatty acids (PLFAs, microbial community biomarkers) in four temperate soils during a 1-year incubation. Additionally, the effects on microbial mineralization/incorporation of BC-C were determined by measuring CO2 efflux and the BC contribution to CO2 and PLFA-C using the natural 13C abundance difference between BC and soils. Biochar addition proportionally increased microbial abundance in all soils and altered the community composition, particularly at the greatest addition rate, towards a more gram-negative bacteriadominated (relative to fungi and gram-positive) community. Though chemically recalcitrant, the BC served as a substrate for microbial activity, more so at large addition rates and in soil with little organic matter. Microbial utilization of BC-C for growth could only partially explain the observed increase in microbial biomass, suggesting that other, potentially abiotic, mechanisms were involved. The strong decrease in PLFA EE (−77%) in all soils with biochar addition emphasizes the need to measure and correct for EE when using PLFA biomarkers to estimate soil microbial responses to BC additions. Overall, our study provides support for BC use as a soil amendment that potentially stimulates microbial activity and growth

Author: K. Terytze et. al. (2016)   Paper: Frei Universität Berlin

Schließung von Kreisläufen durch Energie- und Stoffstrommanagement bei Nutzung der Terra-Preta-Technologie im Botanischen Garten im Hinblick auf Ressourceneffizienz und Klimaschutz – Modellprojekt Urban farming

Die Verwertung von organischen Rest- und Abfallstoffen leistet einen wichtigen Beitrag zum Klima- und Umweltschutz und der Schonung fossiler Ressourcen. Aufgrund der ökologischen und ökonomischen Bedeutung besitzen organische Abfälle darüber hinaus eine wichtige Rolle innerhalb eines regionalen Stoffstrommanagements (IfaS, 2008). Durch die energiepolitische Abhängigkeit und die Auswirkungen des Klimawandels ist es erforderlich, lokal bis regional angepasste Konzepte für ein innovatives, integriertes Landnutzungs-, Energie- und Stoffstrommanagement zu entwickeln.

Author:
Terytze, Konstantin; Wagner, Robert; Schatten, René; Rößler, Kathrin; König, Nadine
Published:
2016
Paper:
Frei Universität Berlin
Link/Pdf:
https://refubium.fu-berlin.de/handle/fub188/15068

Die Verwertung von organischen Rest- und Abfallstoffen leistet einen wichtigen Beitrag zum Klima- und Umweltschutz und der Schonung fossiler Ressourcen. Aufgrund der ökologischen und ökonomischen Bedeutung besitzen organische Abfälle darüber hinaus eine wichtige Rolle innerhalb eines regionalen Stoffstrommanagements (IfaS, 2008). Durch die energiepolitische Abhängigkeit und die Auswirkungen des Klimawandels ist es erforderlich, lokal bis regional angepasste Konzepte für ein innovatives, integriertes Landnutzungs-, Energie- und Stoffstrommanagement zu entwickeln. Der Botanische Garten Berlin (BG) zählt u.a. aufgrund seiner Fläche (43 Hektar) und seiner 20.000 Pflanzenarten zu den größten und bedeutendsten Botanischen Gärten der Welt. Diese Pflanzenvielfalt produziert eine große Menge an Biomasse, die jährlich ca. 600 Tonnen Kohlendioxid speichert (BG, unveröffentlicht). Daraus resultieren durchschnittlich 2.100 m³ pflanzliche Reststoffe. Zu Projektbeginn wurden diese nur teilweise selbst genutzt. Ein Großteil der Pflanzenreste wurde von externen Firmen entsorgt. Daneben fallen durch Besucher und Mitarbeiter des BG in nicht unbeträchtlichem Umfang Rohstoffe in Form von Urin und Fäkalien an, die in das örtliche Entsorgungssystem einfließen. Die darin enthaltenen Nährstoffe (vor allem Stickstoff und Phosphor) werden als eine wichtige Quelle für den zukünftigen internen Bedarf angesehen. Bisher zugekaufte Dünger könnten so teilweise ersetzt werden. Durch technische Neuerungen und verbesserte Prozessführungen wurde im BG der Grundstein für eine erfolgreiche und nachhaltige Entwicklung auf betrieblicher Ebene gelegt. Der neue Verwertungsansatz stellt einerseits einen Beitrag zum Klimaschutz in Bezug auf eine erhöhte Kohlenstoffspeicherung in Böden dar, andererseits wird ein möglicher Ansatz zur Adaption an die Folgen des Klimawandels aufgezeigt, der auf andere Lokalitäten und Regionen übertragbar ist.

Author: J. Wang et. al. (2012)   Paper: Research Gate

Auswirkungen der Änderung der Pflanzenkohle in zwei Böden auf das Treibhausgas Emissionen und Pflanzenproduktion

Hintergrund: Weltweit wächst das Interesse bei der Verwendung von Pflanzenkohle in der Landwirtschaft, um die globale Klimaerwärmung zu mildern und die Ernteproduktivität zu verbessern. Methoden, die Auswirkungen von Pflanzenkohle auf das Treibhausgas und (THG)-Emissionen sowie Reis- und Weizenerträge haben, wurden mit Hilfe von Freilandversuchen in zwei verschiedenen Böden (Hochlandboden vs. Rohboden) und einer aeroben Inkubationsexperiment im Rohboden bemessen.

Author:
Jinyang Wang & Xiaojian Pan & Yinglie Liu & Xiaolin Zhang & Zhengqin Xiong
Published:
2012
Paper:
Research Gate
Pages
287-298
Link/Pdf:
https://www.researchgate.net/publication/230563476_Effects_of_biochar_amendment_in_two_soils_on_greenhouse_gas_emissions_and_crop_production

Background Worldwide, there is an increasing interest in using biochar in agriculture to help mitigate global warming and improve crop productivity. Methods The effects of biochar on greenhouse gas (GHG) emissions and rice and wheat yields were assessed using outdoor pot experiments in two different soils (upland soil vs. paddy soil) and an aerobic incubation experiment in the paddy soil. Results Biochar addition to the upland soil increased methane (CH4) emissions by 37 % during the rice season, while it had no effect on CH4 emissions during the wheat season. Biochar amendment decreased nitrous oxide (N2O) emissions up to 54 % and 53 % during the rice and wheat seasons, respectively, but had no effect on the ecosystem respiration in either crop season. In the aerobic incubation experiment, biochar addition significantly decreased N2O emissions and increased carbon dioxide (CO2) emissions from the paddy soil (P<0.01) without urea nitrogen. Biochar addition increased grain yield and biomass if applied with nitrogen fertilizer. Averaged over the two soils, biochar amendments increased the production of rice and wheat by 12 % and 17 %, respectively, and these increases can be partly attributed to the increases in soil nitrate retention. Conclusions Our results demonstrated that although biochar increased the global warming potential at high nitrogen fertilizer application, biochar incorporation significantly decreased N2O emissions while promoting crop production.

Author: H. Li et. al. (2017)   Paper: Science Direct

Mechanismen der Metallsorption durch Pflanzenkohle: Eigenschaften von Pflanzenkohle und Änderungen

Pflanzenkohle, die durch thermische Zersetzung von Biomasse unter sauerstoffbegrenzten Bedingungen hergestellt wird, hat als kostengünstiges Sorbens zur Behandlung von metallkontaminierten Gewässern zunehmend an Bedeutung gewonnen. Es fehlt jedoch an Informationen über die Rolle der verschiedenen Sorptionsmechanismen für verschiedene Metalle und die jüngste Entwicklung der Modifikation von Pflanzenkohle zur Verbesserung der Metallsorptionskapazität, die für die Anwendung von Pflanzenkohle im Feld entscheidend ist. Dieser Bericht fasst die Eigenschaften von Pflanzenkohle (z.B. Oberfläche, Porosität, pH-Wert, Oberflächenladung, funktionelle Gruppen und Mineralkomponenten) und die wichtigsten Mechanismen zusammen, die die Sorption von As, Cr, Cd, Pb und Hg durch Pflanzenkohle regeln.

Author:
Hongbo Li, Xiaoling Dong, Evandro B. da Silva, Letuzia M. de Oliveira, Yanshan Chen, Lena Q. Ma
Published:
2017
Paper:
Science Direct
Link/Pdf:
https://www.sciencedirect.com/science/article/pii/S0045653517304356

Biochar produced by thermal decomposition  of biomass under oxygen-limited conditions has received increasing attention as a cost-effective sorbent to treat metal-contaminated waters. However, there is a lack of information on the roles of different sorption mechanisms for different metals and recent development of biochar modification to enhance metal sorption capacity, which is critical for biochar field application. This review summarizes the characteristics of biochar (e.g., surface area, porosity, pH, surface charge, functional groups, and mineral components) and main mechanisms governing sorption of As, Cr, Cd, Pb, and Hg by biochar. Biochar properties vary considerably with feedstock material and pyrolysis  temperature, with high temperature producing biochars with higher surface area, porosity, pH, and mineral contents, but less functional groups. Different mechanisms dominate sorption of As (complexation and electrostatic interactions), Cr (electrostatic interactions, reduction, and complexation), Cd and Pb (complexation, cation exchange, and precipitation), and Hg (complexation and reduction). Besides sorption mechanisms, recent advance in modifying biochar by loading with minerals, reductants, organic functional groups, and nanoparticles, and activation with alkali solution to enhance metal sorption capacity is discussed. Future research needs for field application of biochar include competitive sorption mechanisms of co-existing metals, biochar reuse, and cost reduction of biochar production.

Author: S. Brodowski et. al (2005)   Paper: Science Direct

Morphologische und chemische Eigenschaften von Schwarzkohlenstoff in physikalischen Bodenfraktionen, die durch Rasterelektronenmikroskopie und energiedispersive Röntgenspektroskopie ermittelt wurden

Die Böden enthalten erhebliche Mengen an Ruß (BC) aus der Verbrennung von Biomasse und fossilen Brennstoffen. Seine Herkunft, Morphologie und Chemie sind jedoch unklar geblieben. Hier untersuchten wir BC in Partikelgrößen- und Dichteanteilen des Oberflächenbodens eines haplischen Chernozems mit einem Rasterelektronenmikroskop (REM), das an ein energiedispersives Röntgenspektrometer (EDX) gekoppelt ist, um die morphologischen und chemischen Eigenschaften von BC als Funktion seiner Herkunft und seines Verbleibs in Böden zu untersuchen.

Author:
Sonja Brodowski, Wulf Amelung, Ludwig Haumaier, Clarissa Abetz, Wolfgang Zech
Published:
2005
Paper:
Science Direct
Link/Pdf:
https://www.sciencedirect.com/science/article/pii/S0016706104003301

Soils contain significant amounts of black carbon (BC) from biomass and fossil fuel combustion. However, its origin, morphology, and chemistry have remained obscure. Here, we examined BC in particle-size and density fractions of the surface soil of a Haplic Chernozem using a scanning electron microscope (SEM) coupled to an energy-dispersive X-ray spectrometer (EDX) in order to investigate the morphological and chemical properties of BC as a function of its origin and fate in soils. The results showed that BC did not only occur as well-defined but also as SEM-amorphous particles. The BC particles exhibited different morphologies ranging from spherical to irregular shapes and from smooth to rough surfaces. Particles with similar morphologies were found in different soil fractions, indicating that BC from different sources is present in the soil, dominated by soot-BC from coal (and oil) combustion and char-BC from coal combustion and biomass burning. The identity of BC was ascertained by atomic O/C ratios ≤ 0.33. Within a BC particle, the O/C ratio increased from interior to exterior surfaces. The mean degree of oxidation increased significantly with an increase in the size of the particle fraction and an increase in the density of the fraction. The presence of inherently light BC in heavy mineral fractions as well as SEM-visible mineral associations with BC particles provided evidence that the partially oxidized BC chemically interacted with the mineral phase, presumably resulting in a protection of the enclosed BC against further decomposition in soil.

Author: Y. Yao et. al. (2012)   Paper: ScienceDirect

Auswirkung der Änderung der Pflanzenkohle auf die Sorption und Auslaugung von Nitrat, Ammonium, und Phosphat in einem sandigen Boden

Bei der Anwendung auf Böden ist unklar, ob und wie Pflanzenkohle die Bodennährstoffe beeinflussen kann. Dies hat Auswirkungen sowohl auf die Verfügbarkeit von Nährstoffen für Pflanzen oder Mikroben als auch auf die Frage, ob die Bodenverbesserung durch Pflanzenkohle die Nährstoffauswaschung verbessern oder verringern kann. In dieser Arbeit wurde eine Reihe von Laborexperimenten durchgeführt, um die Auswirkung der Pflanzenkohleänderung auf die Sorption und Auswaschung von Nitrat, Ammonium und Phosphat in einem Sandboden zu bestimmen. Insgesamt wurden dreizehn Pflanzenkohlen in Labor-Sorptionsexperimenten getestet, und die meisten von ihnen zeigten wenig/keine Fähigkeit zur Sorption von Nitrat oder Phosphat.

Author:
Ying Yao, Bin Gao , Ming Zhang, Mandu Inyang , Andrew R. Zimmerman
Published:
2012
Paper:
ScienceDirect
Pages
1467-1471
Link/Pdf:
https://www.sciencedirect.com/science/article/pii/S0045653512007709

When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600 °C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.

Author: A. Mukherjee, A. R. Zimmermann (2012)   Paper: Science Direct

Organische Kohlenstoff- und Nährstofffreisetzung aus einer Reihe von im Labor produzierten Pflanzenkohlen und Pflanzenkohle-Boden-Gemische

Pflanzenkohle hat sich als eine vielversprechende Bodenverbesserung erwiesen, die die Kohlenstoffbindung und die Fruchtbarkeit erhöht, aber ihre Auswirkungen auf den Kreislauf und den Verlust von gelöstem organischem Kohlenstoff (DOC), Stickstoff (N) und Phosphor (P) sind nicht gut verstanden. Hier wird die Nährstofffreisetzung aus einer Vielzahl neuer und gealterter Pflanzenkohle, die rein und mit Böden vermischt ist, mittels Batch-Extraktion und Säulenauswaschung untersucht.

Author:
Atanu Mukherjee, Andrew R. Zimmerman
Published:
2012
Paper:
Science Direct
Link/Pdf:
https://www.sciencedirect.com/science/article/pii/S0016706112003382

Biochar has shown promise as a soil amendment that increases carbon sequestration and fertility, but its effects on dissolved organic carbon (DOC), nitrogen (N) and phosphorus (P) cycling and loss is not well understood. Here, nutrient release from a variety of new and aged biochars, pure and mixed with soils, is examined using batch extraction and column leaching. In successive batch extractions of biochar, cumulative losses were about 0.1–2, 0.5–8 and 5–100% of the total C, N and P initially present, respectively, with greater releases from biochars made at lower temperature and from grass. Ammonium was usually the most abundant N form in leachates but nitrate was also abundant in some biochars, while organic N and P represented as much as 61% and 93% of the total N and P lost, respectively. Release of DOC, N and P into water was correlated with biochar volatile matter content and acid functional group density. However, P release via Mehlich-1 extraction was more strongly related to ash content, suggesting a mineral-associated P fraction. Columns with soil/biochar mixtures showed evidence of both soil nutrient sorption by biochar and biochar nutrient sorption by soil, depending upon biochar and soil type. This study demonstrates that biochars contain a range of nutrient forms with different release rates, explaining biochar's variable effect on soil fertility with soil and crop type and over time.

Highlights

► Biochar releases DOC, N and P into aqueous solution, much of it in organic form.
► Biochars made at lower temperature and from grass release relatively more nutrients.
► Leached DOC & N correlate with volatile matter and P release with ash content.
► Biochar sorbs soil nutrients and soil sorbs nutrients released by biochar.

Author: S. Steinbeiss et. al. (2006)   Paper: ScienceDirect

Auswirkung der Änderung der Pflanzenkohle auf die Kohlenstoffbilanz und die mikrobielle Aktivität des Bodens

Wir untersuchten das Verhalten von Pflanzenkohlen in Acker- und Waldböden in einem Gewächshaus-Experiment, um zu beweisen, dass diese Änderungen die Kohlenstoffspeicherung im Boden erhöhen können. Zwei Qualitäten von Pflanzenkohle wurden durch hydrothermale Pyrolyse aus 13C-markierter Glukose (0% N) bzw. Hefe (5% N) hergestellt. Wir quantifizierten die respiratorischen Verluste von Boden- und Pflanzenkohle-Kohlenstoff und berechneten die mittlere Verweilzeit der Pflanzenkohle mit Hilfe der Isotopenmarkierung.

Author:
S. Steinbeiss, G. Gleixner, M. Antonietti
Published:
2006
Paper:
ScienceDirect
Pages
1301-1310
Link/Pdf:
https://www.sciencedirect.com/science/article/abs/pii/S0038071709001242

We investigated the behavior of biochars in arable and forest soil in a greenhouse experiment in order to prove that these amendments can increase carbon storage in soils. Two qualities of biochar were produced by hydrothermal pyrolysis from 13C labeled glucose (0% N) and yeast (5% N), respectively. We quantified respiratory losses of soil and biochar carbon and calculated mean residence times of the biochars using the isotopic label. Extraction of phospholipid fatty acids from soil at the beginning and after 4 months of incubation was used to quantify changes in microbial biomass and to identify microbial groups utilizing the biochars. Mean residence times varied between 4 and 29 years, depending on soil type and quality of biochar. Yeast-derived biochar promoted fungi in the soil, while glucose-derived biochar was utilized by Gram-negative bacteria. Our results suggest that residence times of biochar in soils can be manipulated with the aim to “design” the best possible biochar for a given soil type.

Author: C. I. Kammann et. al. (2015)   Paper: Scientific Reports

Verbesserung des Pflanzenwachstums durch Nitrateinfang in mitkompostierter Pflanzenkohle

Die Bodenverbesserung mit pyrogenem Kohlenstoff (Pflanzenkohle) wird als Strategie zur Verbesserung der Bodenfruchtbarkeit diskutiert, um wirtschaftliche und ökologische Vorteile zu ermöglichen. In gemäßigten Böden hat die Verwendung von reiner Pflanzenkohle jedoch meist mäßig negative bis -positive Ertragseffekte. Hier zeigen wir, dass die Co-Kompostierung die positiven Effekte von Pflanzenkohle erheblich fördert, vor allem durch die Erfassung und Abgabe von Nitrat (Nährstoffen).

Author:
Claudia I. Kammann, Hans-Peter Schmidt, Nicole Messerschmidt, Sebastian Linsel, Diedrich Steffens, Christoph Müller, Hans-Werner Koyro, Pellegrino Conte & Stephen Joseph
Published:
2015
Paper:
Scientific Reports
Link/Pdf:
https://www.nature.com/articles/srep11080

Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars’ positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BCcomp). Conversely, addition of 2% (w/w) untreated biochar (BCpure) decreased the biomass to 60% of the control. Growth-promoting (BCcomp) as well as growth-reducing (BCpure) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BCcomp was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils.

Author: M.P. Bernal et. al. (2009)   Paper: ScienceDirect

Kompostierung von Tierdünger und chemische Kriterien für die Kompostreife Bewertung - Ein Lagebericht

Neue Systeme der Viehzucht, die auf der Intensivierung von Großbetrieben basieren, produzieren riesige Mengen an Dünger und Fäkalien, ohne dass genügend landwirtschaftliche Fläche für deren direkte Ausbringung als Dünger zur Verfügung steht. Die Kompostierung wird zunehmend als eine gute Möglichkeit angesehen, den Überschuss an Dünger als stabilisiertes und hygienisch einwandfreies Endprodukt für die Landwirtschaft zu verwerten, und in den letzten zehn Jahren wurde viel Forschungsarbeit geleistet. Um die Kosten der Kompostierung zu überwinden, sollte jedoch hochwertiger Kompost hergestellt werden.

Author:
M.P. Bernal, J.A. Alburquerque, R. Moral
Published:
2009
Paper:
ScienceDirect
Pages
5444–5453
Link/Pdf:
https://www.sciencedirect.com/science/article/pii/S0960852408009917

New livestock production systems, based on intensification in large farms, produce huge amount of manures and slurries without enough agricultural land for their direct application as fertilisers. Composting is increasingly considered a good way for recycling the surplus of manure as a stabilised and sanitised end-product for agriculture, and much research work has been carried out in the last decade. However, high quality compost should be produced to overcome the cost of composting.

In order to provide and review the information found in the literature about manure composting, the first part of this paper explains the basic concepts of the composting process and how manure characteristics can influence its performance. Then, a summary of those factors such as nitrogen losses (which directly reduce the nutrient content), organic matter humification and compost maturity which affect the quality of composts produced by manure composting is presented. Special attention has been paid to the relevance of using an adequate bulking agent for reducing N-losses and the necessity of standardising the maturity indices due to their great importance amongst compost quality criteria.

Author: H.Schulz, G. Dunst, B. Glaser (2013)   Paper: Agronomy for Sustainable Development

Positive Auswirkungen von kompostierter Pflanzenkohle auf Pflanzenwachstum und Bodenfruchtbarkeit

Die Menschheit steht tatsächlich vor ernsthaften Problemen aufgrund der übermäßigen Ausbeutung von fossilen Brennstoffen, Biomasse, Böden, Stickstoff und Phosphor. Es wird behauptet, dass die Zugabe von Pflanzenkohle zum Boden die C-Speicherung verbessert, um den CO2-Kreislauf in der Atmosphäre zu verhindern. Die Zugabe von Pflanzenkohle sollte auch die Bodenfruchtbarkeit in ähnlicher Weise erhöhen wie die anthropogenen dunklen Erden Zentralamazoniens. Frühere Studien haben gezeigt, dass Pflanzenkohle das Pflanzenwachstum stimuliert und die Effizienz des Düngers erhöht, insbesondere wenn Pflanzenkohle mit organischen Düngemitteln wie Kompost kombiniert wird.

Author:
Hardy Schulz, Gerald Dunst, Bruno Glaser
Published:
2013
Paper:
Agronomy for Sustainable Development
Link/Pdf:
https://www.researchgate.net/publication/257805348_Positive_effects_of_composted_biochar_on_plant_growth_and_soil_fertility

Mankind is actually facing serious issues due to the overexploitation of fossil fuels, biomass, soils, nitrogen, and phosphorus. It is claimed that biochar addition to soil improves C sequestration to prevent CO2 from atmospheric cycling. Biochar addition should also increase soil fertility in a similar way as anthropogenic dark earths of Central Amazonia. Previous studies have shown that biochar stimulates plant growth and increase fertilizer efficiency, especially when biochar is combined with organic fertilizers such as compost. However, little is known about optimum addition amounts and mixture ratios of biochar and compost. Indeed most experiments to mimic Terra preta de Indio focused on biochar alone or biochar in combination with mineral fertilizers. Therefore, we studied optimum biochar and compost amounts and mixture ratios with respect to plant response and soil fertility. We tested the effect of total amount from 0 to 200 Mg/ha, and biochar proportion from 0 % to 50 % biochar, of 18 different compost mixtures on growth of oat (Avena sativa L.) and soil properties in a fully randomized greenhouse study with sandy and loamy soil substrates. We sampled soil substrates before and after plant growth and analyzed plant growth and yield, total organic carbon (TOC), total nitrogen (TN), mineralized nitrogen (Nmin), soil reaction (pH), and electrical conductivity (EC) applying standard procedures. Results show that biomass production was increased with rising biochar and compost amounts. Oat plant height and seed weight was improved only with rising biochar amounts, but not with compost amounts. This could be explained by increase of total organic C and total N but not by plant-available ammonium and nitrate. The positive influence of composted biochar on plant growth and soil properties suggests that composting is a good way to overcome biochar’s inherent nutrient deficiency, making it a suitable technique helping to refine farm-scale nutrient cycles.

Author: C. H. McMichael et. al. (2014)   Paper: PMC - NCBI

Vorhersage präkolumbianischer anthropogener Böden in Amazonien

Das Ausmaß und die Intensität der präkolumbianischen Auswirkungen auf das Tiefland Amazoniens sind nach wie vor ungewiss und umstritten. Verschiedene Indikatoren können verwendet werden, um die Auswirkungen präkolumbianischer Gesellschaften zu beurteilen, aber die Bildung nährstoffreicher Terra-Preta-Böden wurde weithin als Indikator für langfristige Besiedlung und Standorttreue akzeptiert. Mit Hilfe bekannter und neu entdeckter Terra-Preta-Standorte und Algorithmen zur Bestimmung der maximalen Entropie (Maxent) haben wir den Einfluss regionaler Umweltbedingungen auf die Wahrscheinlichkeit bestimmt, dass sich Terra-Preta-Böden an einem bestimmten Ort im Tiefland Amazoniens gebildet hätten.

Author:
C. H. McMichael, M. W. Palace, M. B. Bush, B. Braswell, S. Hagen, E. G. Neves, M. R. Silman, E. K. Tamanaha, and C. Czarnecki
Published:
2014
Paper:
PMC - NCBI
Link/Pdf:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896013/

The extent and intensity of pre-Columbian impacts on lowland Amazonia have remained uncertain and controversial. Various indicators can be used to gauge the impact of pre-Columbian societies, but the formation of nutrient-enriched terra preta soils has been widely accepted as an indication of long-term settlement and site fidelity. Using known and newly discovered terra preta sites and maximum entropy algorithms (Maxent), we determined the influence of regional environmental conditions on the likelihood that terra pretas would have been formed at any given location in lowland Amazonia. Terra pretas were most frequently found in central and eastern Amazonia along the lower courses of the major Amazonian rivers. Terrain, hydrologic and soil characteristics were more important predictors of terra preta distributions than climatic conditions. Our modelling efforts indicated that terra pretas are likely to be found throughout ca 154 063 km2 or 3.2% of the forest. We also predict that terra preta formation was limited in most of western Amazonia. Model results suggested that the distribution of terra preta was highly predictable based on environmental parameters. We provided targets for future archaeological surveys under the vast forest canopy and also highlighted how few of the long-term forest inventory sites in Amazonia are able to capture the effects of historical disturbance.

Author: S. Case Niall et. al. (2013)   Paper: Wiley Online Library

Kann Pflanzenkohle die Treibhausgasemissionen im Boden aus einer Miscanthus-Bioenergiepflanzen reduzieren?

Die Energieproduktion aus Bioenergiepflanzen kann die Treibhausgasemissionen (THG) durch die Substitution fossiler Brennstoffe erheblich reduzieren. Eine Änderung der Pflanzenkohle im Boden kann die Nettoklimawirkung der Produktion von Bioenergiepflanzen weiter verringern, dies wurde jedoch noch nicht unter Feldbedingungen bewertet.

Author:
Sean D. C. Case Niall P. McNamara David S. Reay Jeanette Whitaker
Published:
2013
Paper:
Wiley Online Library
Pages
76-89
Link/Pdf:
https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12052

Energy production from bioenergy crops may significantly reduce greenhouse gas (GHG) emissions through substitution of fossil fuels. Biochar amendment to soil may further decrease the net climate forcing of bioenergy crop production, however, this has not yet been assessed under field conditions. Significant suppression of soil nitrous oxide (N2O) and carbon dioxide (CO2) emissions following biochar amendment has been demonstrated in short‐term laboratory incubations by a number of authors, yet evidence from long‐term field trials has been contradictory. This study investigated whether biochar amendment could suppress soil GHG emissions under field and controlled conditions in a Miscanthus × Giganteus crop and whether suppression would be sustained during the first 2 years following amendment. In the field, biochar amendment suppressed soil CO2 emissions by 33% and annual net soil CO2 equivalent (eq.) emissions (CO2, N2O and methane, CH4) by 37% over 2 years. In the laboratory, under controlled temperature and equalised gravimetric water content, biochar amendment suppressed soil CO2 emissions by 53% and net soil CO2 eq. emissions by 55%. Soil N2O emissions were not significantly suppressed with biochar amendment, although they were generally low. Soil CH4 fluxes were below minimum detectable limits in both experiments. These findings demonstrate that biochar amendment has the potential to suppress net soil CO2 eq. emissions in bioenergy crop systems for up to 2 years after addition, primarily through reduced CO2 emissions. Suppression of soil CO2 emissions may be due to a combined effect of reduced enzymatic activity, the increased carbon‐use efficiency from the co‐location of soil microbes, soil organic matter and nutrients and the precipitation of CO2 onto the biochar surface. We conclude that hardwood biochar has the potential to improve the GHG balance of bioenergy crops through reductions in net soil CO2 eq. emissions.

Author: L. R. Peake et. al. (2014)   Paper: ScienceDirect

Quantifizierung des Einflusses von Pflanzenkohle auf die physikalischen und hydrologischen Eigenschaften von ungleichen Böden

Es gibt Hinweise darauf, dass Pflanzenkohle die physikalischen Eigenschaften des Bodens, insbesondere die Bodenhydrologie, beeinflusst, doch es gibt relativ wenig Daten zu diesem Thema, insbesondere in Bezug auf den Bodentyp oder die Bodenmerkmale. Diese Studie stellt einen neuartigen Versuch vor, den Einfluss von Pflanzenkohle (angewandt bei 0,1, 0,5 und 2,5%) auf die physikalischen Eigenschaften des Bodens in Bezug auf quantifizierte Bodenvariablen zu analysieren.

Author:
Lewis R. Peake, Brian J. Reid, Xiangyu Tang
Published:
2014
Paper:
ScienceDirect
Pages
182-190
Link/Pdf:
https://www.sciencedirect.com/science/article/pii/S0016706114002651

Evidence suggests that biochar influences soil physical properties, especially soil hydrology, yet relatively little data exists on this topic, especially in relation to soil type or characteristics. This paper presents a novel attempt at analysing the influence of biochar (applied at 0.1, 0.5 and 2.5%) on the physical properties of soil with respect to quantified soil variables. Pot experiments were used to establish the effect of biochar on: bulk density, soil moisture content at field capacity and available water capacity. The aggregate effect of biochar across all soils was significant (P < 0.01) for all of the properties. With increasing amount of biochar, changes to bulk density, field capacity and available water were more pronounced. In the 2.5% treatments these changes ranged from − 4.2% to − 19.2%, 1.3% to 42.2% and 0.3% to 48.4%, respectively. Regression revealed that soil silt content negatively moderated the influence of biochar on field capacity and available water capacity. The results suggested that medium (20 t ha− 1) and high (100 t ha− 1) biochar applications could improve water-holding capacity (by up to 22%) and ameliorate compaction (by up to 15%) and that soils low in silt are likely to be more hydrologically responsive to biochar application.

Highlights

•The effect of biochar is reported with respect to quantified soil variables.
•Exceptionally this biochar study included eight dissimilar soils.
•Biochar (100 t ha− 1) reduced bulk density by circa 4.2–19.2%.
•Biochar (100 t ha− 1) improved FC by 1.3–42.2% and AWC by 0.3–48.4%.
•Soil silt content negatively moderated the influence of biochar on FC and AWC.
Author: Y. Kuzyakov (2009)   Paper: ScienceDirect

Zersetzung von Schwarzkohlenstoff und Einbau in die mikrobielle Biomasse des Bodens geschätzt durch 14C-Kennzeichnung

Die unvollständige Verbrennung von organischen Stoffen wie Vegetation oder fossilen Brennstoffen führte zu einer Anhäufung von verkohlten Produkten im oberen Bodenhorizont. Solche verkohlten Produkte, die häufig als pyrogener Kohlenstoff oder Ruß (BC) bezeichnet werden, können langfristig als wichtige Kohlenstoffsenke (C) fungieren, da ihre mikrobielle Zersetzung und chemische Umwandlung wahrscheinlich sehr langsam erfolgt.

Author:
Yakov Kuzyakov a, Irina Subbotina b , Haiqing Chen b , Irina Bogomolova a , Xingliang Xu
Published:
2009
Paper:
ScienceDirect
Pages
210-219
Link/Pdf:
https://www.sciencedirect.com/science/article/abs/pii/S0038071708003544

Incomplete combustion of organics such as vegetation or fossil fuel led to accumulation of charred products in the upper soil horizon. Such charred products, frequently called pyrogenic carbon or black carbon (BC), may act as an important long-term carbon (C) sink because its microbial decomposition and chemical transformation is probably very slow. Direct estimations of BC decomposition rates are absent because the BC content changes are too small for any relevant experimental period. Estimations based on CO2 efflux are also unsuitable because the contribution of BC to CO2 is too small compared to soil organic matter (SOM) and other sources.

We produced BC by charring 14C labeled residues of perennial ryegrass (Lolium perenne). We then incubated this 14C labeled BC in Ah of a Haplic Luvisol soil originated from loess or in loess for 3.2 years. The decomposition rates of BC were estimated based on 14CO2 sampled 44 times during the 3.2 years incubation period (1181 days). Additionally we introduced five repeated treatments with either 1) addition of glucose as an energy source for microorganisms to initiate cometabolic BC decomposition or 2) intensive mixing of the soil to check the effect of mechanical disturbance of aggregates on BC decomposition. Black carbon addition amounting to 20% of Corg of the soil or 200% of Corg of loess did not change total CO2 efflux from the soil and slightly decreased it from the loess. This shows a very low BC contribution to recent CO2 fluxes. The decomposition rates of BC calculated based on 14C in CO2 were similar in soil and in loess and amounted to 1.36 10−5 d−1 (=1.36 10−3% d−1). This corresponds to a decomposition of about 0.5% BC per year under optimal conditions. Considering about 10 times slower decomposition of BC under natural conditions, the mean residence time (MRT) of BC is about 2000 years, and the half-life is about 1400 years. Considering the short duration of the incubation and the typical decreasing decomposition rates with time, we conclude that the MRT of BC in soils is in the range of millennia.

The strong increase in BC decomposition rates (up to 6 times) after adding glucose and the decrease of this stimulation after 2 weeks in the soil (and after 3 months in loess) allowed us to conclude cometabolic BC decomposition. This was supported by higher stimulation of BC decomposition by glucose addition compared to mechanical disturbance as well as higher glucose effects in loess compared to the soil. The effect of mechanical disturbance was over within 2 weeks. The incorporation of BC into microorganisms (fumigation/extraction) after 624 days of incubation amounted to 2.6 and 1.5% of 14C input into soil and loess, respectively. The amount of BC in dissolved organic carbon (DOC) was below the detection limit (<0.01%) showing no BC decomposition products in water leached from the soil.

We conclude that applying 14C labeled BC opens new ways for very sensitive tracing of BC transformation products in released CO2, microbial biomass, DOC, and SOM pools with various properties.

Author: X. Yu et al. (2009)   Paper: ScienceDirect

Reduzierte Pflanzenaufnahme von Pestiziden mit Pflanzenkohlezusätzen im Boden

Wir untersuchten die Wirksamkeit von zwei Arten von Pflanzenkohle bei der Verringerung der Bioverfügbarkeit von zwei im Boden ausgebrachten Insektiziden (Chlorpyrifos und Carbofuran) für Frühlingszwiebeln (Allium cepa). Die aus der Pyrolyse von Eucalyptus spp. und Holzspänen bei 450 und 850 °C (BC850) hergestellte Pflanzenkohle wurde gründlich in den Boden gemischt, um 0, 0,1, 0,5 und 1 % des Bodengewichts zu erreichen.

Author:
Xiang-Yang Yu, Guang-Guo Yinga, Rai S.Kookana
Published:
2009
Paper:
ScienceDirect
Pages
665-671
Link/Pdf:
https://www.sciencedirect.com/science/article/pii/S0045653509004226

We investigated the effectiveness of two types of biochars in reducing the bioavailability of two soil-applied insecticides (chlorpyrifos and carbofuran) to Spring onion (Allium cepa). The biochars prepared from the pyrolysis of Eucalyptus spp. wood chips at 450 and 850 °C (BC850) were thoroughly mixed into the soil to achieve 0%, 0.1%, 0.5% and 1% by soil weight. A spring onion crop was grown for 5 wk in the biochar-amended soils spiked with 50 mg kg−1 of each pesticide. The loss of both pesticides due to degradation and or sequestration in soils decreased significantly with increasing amounts of biochars in soil. Over 35 d, 86–88% of the pesticides were lost from the control soil, whereas it was only 51% of carbofuran and 44% of chlorpyrifos from the soil amended with 1.0% BC850. Despite greater persistence of the pesticide residues in biochar-amended soils, the plant uptake of pesticides decreased markedly with increasing biochar content of the soil. With 1% of BC850 soil amendment, the total plant residues for chlorpyrifos and carbofuran decreased to 10% and 25% of that in the control treatment, respectively. The BC850 was particularly effective in reducing phytoavailability of both pesticides from soil, due to its high affinity for and ability to sequester pesticide residues.

Author: Y. Ding et. al. (2016)   Paper: Research Gate

Pflanzenkohle zur Verbesserung der Bodenfruchtbarkeit. Ein Lagebericht

Die Erschöpfung der Bodenmineralien ist ein großes Problem, das hauptsächlich auf Bodenerosion und Nährstoffauswaschung zurückzuführen ist. Der Zusatz von Pflanzenkohle ist eine Lösung, weil Pflanzenkohle nachweislich die Fruchtbarkeit verbessert ,zur Förderung des Pflanzenwachstums beiträgt, zur Steigerung der Ernteerträge sorgt und Kontaminationen reduziert.

Author:
Yang Ding & Yunguo Liu & Shaobo Liu & Zhongwu Li & Xiaofei Tan & Xixian Huang & Guangming Zeng1 & Lu Zhou & Bohong Zheng
Published:
2016
Paper:
Research Gate
Link/Pdf:
https://www.researchgate.net/publication/303694067_Biochar_to_improve_soil_fertility_A_review

Abstract Soil mineral depletion is a major issue due mainly to soil erosion and nutrient leaching. The addition of biochar is a solution because biochar has been shown to improve soil fertility, to promote plant growth, to increase crop yield, and to reduce contaminations. We review here biochar potential to improve soil fertility. The main properties of biochar are the following: high surface area with many functional groups, high nutrient content, and slow-release fertilizer. We discuss the influence of feedstock, pyrolysis temperature, pH, application rates, and soil types. We review the mechanisms ruling the adsorption of nutrients by biochar.

Author: R. Renner (2007)   Paper: Environmental Science & Technology

Umdenken bei Pflanzenkohle

Stellen Sie sich einen einfachen landwirtschaftlichen Bodenzusatz mit der Möglichkeit von doppelten oder dreifachen Pflanzenerträgen bei reduziertem Bedarf an Dünger vor. Was wäre, wenn zusätzlich zur Reduzierung des nährstoffhaltigen Abflusses diese erstaunliche Zutat auch Treibhausgase in großem Maßstab reduzieren könnte? Diese revolutionäre Substanz existiert, und ist noch nicht einmal hochtechnologisch oder gar neuartig.Ihre Verwendung lässt sich bis in die Zeit bevor Kolumbus Südamerika entdeckte zurückführen.

Author:
Rebecca Renner
Published:
2007
Paper:
Environmental Science & Technology
Link/Pdf:
https://pubs.acs.org/doi/10.1021/es0726097

Imagine a simple agricultural soil amendment with the ability to double
or triple plant yields while at the same time reducing the need for fertilizer. In addition to decreasing nutrient-laden runoff, what if this amazing ingredient could also cut greenhouse gases on a vast scale? This revolutionary substance exists, and it isn’t high-tech, or even novel— its use can be traced back to pre-
Columbian South America. The ingredient is charcoal, in this context called biochar or agrichar, and if a growing number of scientists, entrepreneurs, farmers, and policy makers prevail, this persistent form of carbon will be finding its way into soils around the world. “Biocharhas enormous potential,” says John Mathews at Macquarie University in Australia. “When scaled up, it can take out gigatons of carbon from the atmosphere,” he adds.Agrichar’s benefits flow from two properties, says Cornell University soil scientist Johannes Lehmann. It makes plants grow well and is extremely stable, persisting for hundreds if not thousands of years. “Biochar can be used to address some of the most urgent environmental problems of our time—soil degradation, food insecurity, water pollution from agrichemicals, and
climate change,” he says. But fulfilling the promise is going to take more research. “We needto get reliable data on the agronomic and carbon sequestration potential of biochar,” says Robert Brown, director
of the Office of Biorenewables Programs at Iowa State University. “The effects are real, but these are hard to quantify at present.” Momentum appears to be building— this year has seen the first international conference on biochar, more research funding, and the scaling up of projects from the
greenhouse to the field.

Author: J. Lehmann (2006)   Paper: Springer Link

Pflanzenkohle-Bindung im terrestrischen Ökosystem - Ein Rückblick

Die Anwendung von Pflanzenkohle (Holzkohle oder aus Biomasse gewonnener schwarzer Kohlenstoff (C)) auf den Boden wird als neuer Ansatz vorgeschlagen, um eine signifikante, langfristige Senkung für atmosphärisches Kohlendioxid in terrestrischen Ökosystemen zu schaffen.

Author:
Johannes Lehmann, John Gaunt & Marco Rondon
Published:
2006
Paper:
Springer Link
Pages
403-427
Link/Pdf:
https://link.springer.com/article/10.1007/s11027-005-9006-5

The application of bio-char (charcoal or biomass-derived black carbon (C)) to soil is proposed as a novel approach to establish a significant, long-term, sink for atmospheric carbon dioxide in terrestrial ecosystems. Apart from positive effects in both reducing emissions and increasing the sequestration of greenhouse gases, the production of bio-char and its application to soil will deliver immediate benefits through improved soil fertility and increased crop production. Conversion of biomass C to bio-char C leads to sequestration of about 50% of the initial C compared to the low amounts retained after burning (3%) and biological decomposition (< 10–20% after 5–10 years), therefore yielding more stable soil C than burning or direct land application of biomass. This efficiency of C conversion of biomass to bio-char is highly dependent on the type of feedstock, but is not significantly affected by the pyrolysis temperature (within 350–500 C common for pyrolysis). Existing slash-and-burn systems cause significant degradation of soil and release of greenhouse gases and opportunies may exist to enhance this system by conversion to slash-and-char systems. Our global analysis revealed that up to 12% of the total anthropogenic C emissions by land use change (0.21 Pg C) can be off-set annually in soil, if slash-and-burn is replaced by slash-and-char. Agricultural and forestry wastes such as forest residues, mill residues, field crop residues, or urban wastes add a conservatively estimated 0.16 Pg C yr−1. Biofuel production using modern biomass can produce a bio-char by-product through pyrolysis which results in 30.6 kg C sequestration for each GJ of energy produced. Using published projections of the use of renewable fuels in the year 2100, bio-char sequestration could amount to 5.5–9.5 Pg C yr−1 if this demand for energy was met through pyrolysis, which would exceed current emissions from fossil fuels (5.4 Pg C yr−1). Bio-char soil management systems can deliver tradable C emissions reduction, and C sequestered is easily accountable, and verifiable.

Author: Y. Fang et. al. (2013)   Paper: Wiley Online Library

Stabilität von Pflanzenkohle in vier kontrastierenden Böden

Es gibt ein begrenztes Verständnis der Auswirkungen der Bodeneigenschaften auf die Stabilität von Pflanzenkohle (C). Dieses Wissen ist unerlässlich, um die Fähigkeit der Pflanzenkohle zur langfristigen Bindung von Boden-C zu bewerten.

Author:
Y. Fang B. Singh B. P. Singh E. Krull
Published:
2013
Paper:
Wiley Online Library
Pages
60-71
Link/Pdf:
https://onlinelibrary.wiley.com/doi/abs/10.1111/ejss.12094

There is a limited understanding of the effects of soil properties on biochar carbon (C) stability. This knowledge is essential to evaluate the capacity of biochar for long‐term soil C sequestration fully. In this study two biochars, produced by slow pyrolysis at 450 or 550°C from a δ13C‐depleted (−36.4‰) Eucalyptus saligna Sm. woody material, were incubated in four soils (Inceptisol, Entisol, Oxisol and Vertisol) of contrasting chemical and mineralogical properties. The total biochar‐C mineralized over 12 months was 0.30–1.14 and 0.97–2.71% from the soil‐biochar mixtures incubated at 20 and 40°C, respectively. The total biochar‐C mineralized (mg CO2‐C per unit of native soil organic C (SOC) basis) from soils incubated with the 450°C biochar was approximately twice the corresponding amount mineralized from the 550°C biochar systems. The influence of soil properties on biochar‐C mineralization was greater for the 450°C biochar than the 550°C biochar. The smallest proportion of C mineralized from the 450°C biochar occurred in the Inceptisol incubated at 20°C and in the Oxisol at 40°C. However, when expressed on a per unit of native SOC basis, the C mineralization of the 450 and 550°C biochars was least in the Oxisol and greatest in the Inceptisol at both incubation temperatures. Mean residence times (MRTs) of the biochars estimated using the two‐pool exponential model varied between 44 and 610 years. The estimated MRT of the biochars may vary under field conditions depending upon the environmental conditions and addition of labile C from plants. Our results indicate that biochar‐C was stabilized by variable charge minerals in the Oxisol and that the stabilization occurred rapidly at high temperatures.

Author: L. Biedermann et. al. (2012)   Paper: Wiley Online Library

Pflanzenkohle und ihre Auswirkungen auf die Pflanzenproduktivität und den Nährstoffkreislauf: eine Meta-Analyse

Pflanzenkohle ist ein kohlenstoffreiches Koprodukt, das bei der Pyrolyse von Biomasse entsteht. Wenn sie auf den Boden aufgetragen wird, widersteht sie der Zersetzung, wodurch der aufgetragene Kohlenstoff effektiv gebunden und die anthropogenen CO2-Emissionen gemildert werden. Weitere geförderte Vorteile der Anwendung von Pflanzenkohle auf dem Boden sind eine erhöhte Pflanzenproduktivität und eine geringere Nährstoffauswaschung. Die Auswirkungen von Pflanzenkohle sind jedoch unterschiedlich, und es bleibt unklar, ob der jüngste Enthusiasmus gerechtfertigt werden kann.

Author:
Lori A. Biederman W. Stanley Harpole
Published:
2012
Paper:
Wiley Online Library
Pages
202-214
Link/Pdf:
https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12037

Biochar is a carbon‐rich coproduct resulting from pyrolyzing biomass. When applied to the soil it resists decomposition, effectively sequestering the applied carbon and mitigating anthropogenic CO2 emissions. Other promoted benefits of biochar application to soil include increased plant productivity and reduced nutrient leaching. However, the effects of biochar are variable and it remains unclear if recent enthusiasm can be justified. We evaluate ecosystem responses to biochar application with a meta‐analysis of 371 independent studies culled from 114 published manuscripts. We find that despite variability introduced by soil and climate, the addition of biochar to soils resulted, on average, in increased aboveground productivity, crop yield, soil microbial biomass, rhizobia nodulation, plant K tissue concentration, soil phosphorus (P), soil potassium (K), total soil nitrogen (N), and total soil carbon (C) compared with control conditions. Soil pH also tended to increase, becoming less acidic, following the addition of biochar. Variables that showed no significant mean response to biochar included belowground productivity, the ratio of aboveground : belowground biomass, mycorrhizal colonization of roots, plant tissue N, and soil P concentration, and soil inorganic N. Additional analyses found no detectable relationship between the amount of biochar added and aboveground productivity. Our results provide the first quantitative review of the effects of biochar on multiple ecosystem functions and the central tendencies suggest that biochar holds promise in being a win‐win‐win solution to energy, carbon storage, and ecosystem function. However, biochar's impacts on a fourth component, the downstream nontarget environments, remain unknown and present a critical research gap.

Author: Z. Tan, C. S. K. Lin, X. Ji, T. J. Rainey (2017)   Paper: Science Direct

Rückführung von Pflanzenkohle auf die Felder: Ein Rückblick

Pflanzenkohle, die durch thermochemische Umwandlung von Biomasse erzeugt wird, reduziert die Treibhausgasemissionen und ist nützlich für die Verbesserung der ökologischen Systeme in der Landwirtschaft. Bestimmte Pflanzenkohle funktioniert jedoch gut zur Verbesserung des Bodens, andere Pflanzenkohle nicht. Warum? Weil nicht klar ist, wie man die beste Pflanzenkohle für den Boden vorbereitet. Es besteht eine Diskrepanz zwischen der Vorbereitung von Pflanzenkohle und der Rückführung der Pflanzenkohle in den Boden.

Author:
Zhongxin Tan, Carol S.K. Lin, Xiaoyan Ji, Thomas J. Rainey
Published:
2017
Paper:
Science Direct
Pages
1-11
Link/Pdf:
https://www.sciencedirect.com/science/article/abs/pii/S0929139316303687

Biochar generated from thermochemical conversion of biomass reduces greenhouse gas emissions and is useful for improving ecological systems in agriculture. However, certain biochars function well in improving soil, and other biochars do not. Why? Because it is not clear how to prepare the best biochar for soil. There is a disconnect between biochar preparation and returning the biochar to the soil. To elucidate this relationship, this paper reviews (i) technologies for preparing biochar, (ii) how preparation conditions affect biochar properties, and (iii) the effects on soil physical and chemical properties. In addition to reducing greenhouse gas emissions, biochar improves the physicochemical and microbial properties of soil and absorbs poisonous and pernicious substances. Therefore, as biochar is produced by pyrolysis, optimizing processing conditions to improve its properties for agricultural use is a key issue explored in this article.

Author: K. Karhu (2011)   Paper: ResearchGate

Die Zugabe von Pflanzenkohle zum landwirtschaftlichen Boden erhöht die CH4-Aufnahme- und Wasserspeicherkapazität - Ergebnisse einer kurzfristigen Pilot-Feldstudie

Die Zugabe von Pflanzenkohle zu landwirtschaftlichen Böden wurde vorgeschlagen, um den Klimawandel durch eine verstärkte biogene Kohlenstoffspeicherung und die Reduzierung von Treibhausgasemissionen abzuschwächen. Wir haben die Flüsse von N2O, CO2 und CH4 nach Zugabe von 9tha-1 Pflanzenkohle auf einem landwirtschaftlichen Boden in Südfinnland im Mai 2009 gemessen.

Author:
Kristiina Karhu, Toumas Mattila, Kristiina Regina
Published:
2011
Paper:
ResearchGate
Pages
309-313
Link/Pdf:
https://www.researchgate.net/publication/251520323_Biochar_Addition_to_Agricultural_Soil_Increased_CH4_Uptake_and_Water_Holding_Capacity_-_Results_from_a_Short-Term_Pilot_Field_Study

Biochar addition to agricultural soil has been suggested to mitigate climate change through increased biogenic carbon storage and reduction of greenhouse gas emissions. We measured the fluxes of N2O, CO2, and CH4 after adding 9tha−1 biochar on an agricultural soil in Southern Finland in May 2009. We conducted these measurements twice a week for 1.5 months, between sowing and canopy closure, to capture the period of highest N2O emissions, where the potential for mitigation would also be highest. Biochar addition increased CH4 uptake (96% increase in the average cumulative CH4 uptake), but no statistically significant differences were observed in the CO2 and N2O emissions between the biochar amended and control plots. Added biochar increased soil water holding capacity by 11%. Further studies are needed to clarify whether this may help balance fluctuations in water availability to plants in the future climate with more frequent drought periods.

Author: J. D. Gomez et. al. (2013)   Paper: Wiley Online Library

Die Zugaberate von Pflanzenkohle beeinflusst die mikrobielle Vielfalt und Aktivität von Böden in gemäßigten Zonen

Pflanzenkohle (BC) zur Bodenverbesserung ist eine vorgeschlagene Strategie zur Verbesserung der Bodenfruchtbarkeit und zur Eindämmung des Klimawandels. Bevor dies jedoch zu einer empfohlenen Bewirtschaftungspraxis werden kann, ist ein besseres Verständnis der Auswirkungen von BC auf die Bodenbiota erforderlich. Wir haben die Auswirkungen der Zugaberaten (0, 1, 5, 10 und 20 Massenprozent) eines schnell pyrolysierenden, aus Holz gewonnenen BC auf die Extraktionseffizienz (EE), die Abundanz und die zeitliche Dynamik von Phospholipid-Fettsäuren (PLFAs, mikrobielle Gemeinschafts-Biomarker) in vier gemäßigten Böden während einer einjährigen Inkubation bestimmt.

Author:
J. D. Gomez K. Denef C. E. Stewart J. Zheng M. F. Cotrufo
Published:
2013
Paper:
Wiley Online Library
Pages
28-38
Link/Pdf:
https://onlinelibrary.wiley.com/doi/10.1111/ejss.12097

Biochar (BC) amendment to soils is a proposed strategy to improve soil fertility and mitigate climate change. However, before this can become a recommended management practice, a better understanding of the impacts of BC on the soil biota is needed. We determined the effect of addition rates (0, 1, 5, 10 and 20% by mass) of a fast‐pyrolysis wood‐derived BC on the extraction efficiency (EE), abundance and temporal dynamics of phospholipid fatty acids (PLFAs, microbial community biomarkers) in four temperate soils during a 1‐year incubation. Additionally, the effects on microbial mineralization/incorporation of BC‐C were determined by measuring CO2 efflux and the BC contribution to CO2 and PLFA‐C using the natural 13C abundance difference between BC and soils. Biochar addition proportionally increased microbial abundance in all soils and altered the community composition, particularly at the greatest addition rate, towards a more gram‐negative bacteria‐dominated (relative to fungi and gram‐positive) community. Though chemically recalcitrant, the BC served as a substrate for microbial activity, more so at large addition rates and in soil with little organic matter. Microbial utilization of BC‐C for growth could only partially explain the observed increase in microbial biomass, suggesting that other, potentially abiotic, mechanisms were involved. The strong decrease in PLFA EE (−77%) in all soils with biochar addition emphasizes the need to measure and correct for EE when using PLFA biomarkers to estimate soil microbial responses to BC additions. Overall, our study provides support for BC use as a soil amendment that potentially stimulates microbial activity and growth.

Author: S. Schimmelpfennig, B. Glaser (2010)   Paper: Journal of Environmental Quality

Ein Schritt vorwärts zur Charakterisierung: Einige wichtige Eigenschaften zur Unterscheidung von Pflanzenkohle

Die Terra-Preta-Forschung lieferte Belege für den positiven Einfluss von verkohltem organischem Material (Pflanzenkohle) auf unfruchtbare tropische Böden. Angesichts globaler Herausforderungen wie Bodendegradation, Rückgang der fossilen Energieträger, Wasserknappheit und Klimawandel scheint die Verwendung von Pflanzenkohle als eine in regionale Stoffkreisläufe eingebettete Bodenverbesserung eine umfassende Lösung zu bieten.

Author:
Sonja Schimmelpfennig und Bruno Glaser
Published:
2010
Paper:
Journal of Environmental Quality
Link/Pdf:
https://www.researchgate.net/publication/228102866_One_Step_Forward_toward_Characterization_Some_Important_Material_Properties_to_Distinguish_Biochars

Terra Preta research gave evidence for the positive influence of charred organic material (biochar) on infertile tropical soils. Facing global challenges such as land degradation, fossil energy decline, water shortage, and climate change, the use of biochar as a soil amendment embedded into regional matter cycles seems to provide an all-round solution. However, little is known about biochar effects on individual ecosystem processes. Besides, the term is used for a variety of charred products. Therefore, the aim of this study was to investigate principal material properties of different chars to establish a minimum set of analytical properties and thresholds for biochar identification. For this purpose, chars from different production processes (traditional charcoal stack, rotary kiln, Pyreg reactor, wood gasifier, and hydrothermal carbonization) were analyzed for physical and chemical properties such as surface area, black carbon, polycyclic aromatic hydrocarbons, and elemental composition. Our results showed a significant influence of production processes on biochar properties. Based on our results, to identify biochar suitable for soil amendment and carbon sequestration, we recommend using variables with the following thresholds: O/C ratio <0.4, H/C ratio <0.6, black carbon >15% C, polyaromatic hydrocarbons lower than soil background values, and a surface area >100 m g.

Author: H. Neumann (2017)   Paper: top agrar

Pflanzenkohle: Alleskönner für Stall und Acker

Ob Nitraüberschuss oder Klimaschutz: Pflanzenkohle könnte in der Landwirtschaft viele Probleme lösen. Der Markt nimmt rasant an Fahrt auf und scheint eine interessante Verwertung für Biomasse bieten.

Author:
Hinrich Neumann
Published:
2017
Paper:
top agrar
Pages
8-11
Link/Pdf:
https://www.topagrar.com/heftausgabe/Heftausgabe-Die_Themen_des_Energiemagazins_3_2017-9621305.html
Author: M. W. I. Schmidt, A. G. Noack (2000)   Paper: AGU 100

Schwarzer Kohlenstoff in Böden und Sedimenten: Analyse, Verteilung, Auswirkungen und aktuelle Herausforderungen

Dieser Bericht hebt die Allgegenwart von Schwarzkohlenstoff (BC) hervor, der durch die unvollständige Verbrennung von Pflanzenmaterial und fossilen Brennstoffen in Torf, Böden sowie lakustrischen und marinen Sedimenten entsteht. Wir untersuchen verschiedene Definitionen und analytische Ansätze und versuchen, eine gemeinsame Sprache zu finden. BC stellt ein Kontinuum von teilweise verkohltem Material bis hin zu Graphit- und Rußpartikeln dar, wobei keine allgemeine Übereinstimmung über klare Grenzen besteht. Die Bildung von BC kann auf zwei grundlegend verschiedene Arten erfolgen. Die flüchtigen Bestandteile rekondensieren zu hochgradig graphitierter Ruß-BC, während die festen Rückstände Kohle-BC bilden. Beide Formen von BC sind relativ inert und werden durch Wasser und Wind über den fluvialen und atmosphärischen Transport global verteilt. Wir fassen die Ubiquität von BC in Böden und Sedimenten seit der Devonzeit chronologisch zusammen und unterscheiden zwischen BC von Vegetationsbränden und der Verbrennung fossiler Brennstoffe. BC hat wichtige Auswirkungen auf verschiedene biologische, geochemische und ökologische Prozesse.

Author:
Michael W. I. Schmidt und Angela G. Noack
Published:
2000
Paper:
AGU 100
Pages
777-793
Link/Pdf:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1999GB001208

This review highlights the ubiquity of black carbon (BC) produced by incomplete combustion of plant material and fossil fuels in peats, soils, and lacustrine and marine sediments. We examine various definitions and analytical approaches and seek to provide a common language. BC represents a continuum from partly charred material to graphite and soot particles, with no general agreement on clear‐cut boundaries. Formation of BC can occur in two fundamentally different ways. Volatiles recondense to highly graphitized soot‐BC, whereas the solid residues form char‐BC. Both forms of BC are relatively inert and are distributed globally by water and wind via fluvial and atmospheric transport. We summarize, chronologically, the ubiquity of BC in soils and sediments since Devonian times, differentiating between BC from vegetation fires and from fossil fuel combustion. BC has important implications for various biological, geochemical and environmental processes. As examples, BC may represent a significant sink in the global carbon cycle, affect the Earth's radiative heat balance, be a useful tracer for Earth's fire history, build up a significant fraction of carbon buried in soils and sediments, and carry organic pollutants. On land, BC seems to be abundant in dark‐colored soils, affected by frequent vegetation burning and fossil fuel combustion, thus probably contributing to the highly stable aromatic components of soil organic matter. We discuss challenges for future research. Despite the great importance of BC, only limited progress has been made in calibrating analytical techniques. Progress in the quantification of BC is likely to come from systematic intercomparison using BCs from different sources and in different natural matrices. BC identification could benefit from isotopic and spectroscopic techniques applied at the bulk and molecular levels. The key to estimating BC stocks in soils and sediments is an understanding of the processes involved in BC degradation on a molecular level. A promising approach would be the combination of short‐term laboratory experiments and long‐term field trials.

Author: C. E. Brewer et. al. (2019)   Paper: Wiley Interscience

Charakterisierung von Pflanzenkohle von der Schnellpyrolyse und Vergasungssysteme

Die thermochemische Verarbeitung von Biomasse erzeugt eine festes Produkt, das Holzkohle (meist Kohlenstoff) und Asche enthalten. Diese Holzkohle kann zur Wärme- und Stromerzeugung verbrannt werden, vergast, für Adsorptionsanwendungen aktiviert werden, oder auf Böden als Bodenverbesserung und Kohlenstoff als Sequestrierungsmittel verwendet werden. Die vorteilhafteste Verwendung eines der gegebenen Holzkohle hängt von seinen physikalischen und chemischen Merkmalen ab, obwohl die Beziehung von Holzkohle Eigenschaften zu diesen Anwendungen noch nicht gut verstanden wurde.

Author:
Catherine E. Brewer Klaus Schmidt‐Rohr Justinus A. Satrio Robert C. Brown
Published:
2019
Paper:
Wiley Interscience
Pages
386-394
Link/Pdf:
https://aiche.onlinelibrary.wiley.com/doi/10.1002/ep.10378

Thermochemical processing of biomass produces a solid product containing char (mostly carbon) and ash. This char can be combusted for heat and power, gasified, activated for adsorption applications, or applied to soils as a soil amendment and carbon sequestration agent. The most advantageous use of a given char depends on its physical and chemical characteristics, although the relationship of char properties to these applications is not well understood. Chars from fast pyrolysis and gasification of switchgrass and corn stover were characterized by proximate analysis, CHNS elemental analysis, Brunauer‐Emmet‐Teller (BET) surface area, particle density, higher heating value (HHV), scanning electron microscopy, X‐ray fluorescence ash content analysis, Fourier transform infrared spectroscopy using a photo‐acoustic detector (FTIR‐PAS), and quantitative 13C nuclear magnetic resonance spectroscopy (NMR) using direct polarization and magic angle spinning. Chars from the same feedstocks produced under slow pyrolysis conditions, and a commercial hardwood charcoal, were also characterized. Switchgrass and corn stover chars were found to have high ash content (32–55 wt %), much of which was silica. BET surface areas were low (7–50 m2/g) and HHVs ranged from 13 to 21 kJ/kg. The aromaticities from NMR, ranging between 81 and 94%, appeared to increase with reaction time. A pronounced decrease in aromatic CH functionality between slow pyrolysis and gasification chars was observed in NMR and FTIR‐PAS spectra. NMR estimates of fused aromatic ring cluster size showed fast and slow pyrolysis chars to be similar (∼7–8 rings per cluster), while higher‐temperature gasification char was much more condensed (∼17 rings per cluster).

Author: unbekannt (2003)   Paper: wave GmbH

Studie zum Phosphorrecycling aus kommunalem Abwasser in Baden- Württemberg – Möglichkeiten und Grenzen

In der Vergangenheit wurde ein Großteil der bei der Abwasserreinigung anfallenden Klärschlämme landwirtschaftlich als „Dünger“ verwertet und somit die darin enthaltenen Nährstoffe (wie Stickstoff und Phosphor) in den Nährstoffkreislauf zurückgeführt. Da der Anteil dieses Verwertungsweges gegenüber der thermischen Behandlung des anfallenden Klärschlammes kontinuierlich zurückgeht und zudem aktuell eine intensive Diskussion über die Vor- und Nachteile der landwirtschaftlichen Klärschlammnutzung geführt wird, kommt hierbei insbesondere dem Umgang mit Phosphor - als einem nicht substituierbarem Nährstoff - erhöhte Aufmerksamkeit zu.

Author:
unbekannt
Published:
2003
Paper:
wave GmbH
Link/Pdf:
https://fachdokumente.lubw.baden-wuerttemberg.de/servlet/is/40156/wb_Precycling_V31.pdf?command=downloadContent&filename=wb_Precycling_V31.pdf&FIS=203

Es ist davon auszugehen, dass in Baden-Württemberg zur Zeit ca. 8.400 t Phosphor/a aus dem Abwasserstrom entnommen werden. Ca. 50 % des gesamten, eliminierten Phosphors werden bei den Anlagen mit einer Ausbaugröße über 100.000 EW aus dem Abwasser entfernt. Die Vielzahl der Anlagen mit einer Ausbaugröße unter 10.000 EW tragen dabei in der Summe nur zu ca. 10 % des eliminierten Phosphors aus Kläranlagen bei. Insgesamt ist das Potenzial des Phosphorrecyclings aus Abwasser – insbesondere auch im Vergleich zum PDüngemitteleinsatz- damit beschränkt.
Bei Anstrebung eines flächendeckenden Phosphorrecylings in Baden-
Württemberg aus kommunalen Abwasseranlagen in Höhe von 30 % bezogen auf die zur Zeit entnommene Fracht müssen bei 93 Anlagen (bis zu einer Ausbaugröße von ca. 45.000 EW) entsprechende Nebenstromverfahren (bspw. Phostrip-Verfahren, MAP-Fällung aus dem Schlammwasser etc.) realisiert werden. Damit werden dann ca. 64 % der anfallenden Schlammtrockenmasse zusätzlich behandelt.
Bei dem Einsatz von Verfahren zum Recycling aus dem Schlamm oder
Aschen muss eine entsprechende Verfahrenstechnik bei nur 13 Anlagen (bis zu
einer Ausbaugröße von ca. 250.000 EW) realisiert werden. Damit werden dann nur ca. 32 % der anfallenden Schlammtrockenmasse zusätzlich behandelt. Bei Aufschluss der Asche aus den drei Monoverbrennungsanlagen von Baden-
Württemberg könnte bei Aufbereitung dieser Aschen theoretisch ein P-Recycling von ca. 14 % bezogen auf die heute entnommen P-Fracht in Baden-Württemberg erreicht werden.
Die Betrachtungen zeigen aber auch deutlich, dass ein weitgehendes Phosphorrecycling in Baden-Württemberg infolge der Anlagenverteilung mit sehr vielen kleinen Kläranlagen nur über eine Schwerpunktbildung sinnvoll erscheint. In diesem Zusammenhang ist darauf hinzuweisen, dass das Phosphorrecycling als gesellschaftliche Aufgabe einer nachhaltigen Ressourcenbewirtschaftung zu begreifen ist, deren Finanzierung und Betrieb losgelöst von der bisherigen Struktur über die Abwassergebühr im Einzugsgebiet der Kläranlagen erfolgen muss. Denkbar sind hier Finanzierungsmodelle über einwohnerbezogene Sonderabgaben, Nutzerabgabe (P-Steuer) oder über den allgemeinen Haushalt. Bei grob geschätzten Aufwendungen zu Erzielung eines gezielten 30%igen P-Recylings aus Abwasser mit Nebenstromverfahren sind dann jährliche Belastungen von mindestens 16 Mio. EUR für die Investition und den Betrieb dieser Anlagen anzusetzen.
Auch ist anzumerken, dass für Baden-Württemberg eine P-Recyclingquote über 30% (bezogen auf den entnommenen Phosphor) ohne eine maßgebliche, direkte landwirtschaftliche Verwertung von Nassschlämmen nur mit einem außerordentlich hohem Aufwand auf zahlreichen Kläranlagen in Baden-Württemberg möglich ist.
Verfahrenstechniken zur Rückgewinnung von Phosphaten aus dem Abwasser sind bei den Prozessen der Kristallisation bereits heute vereinzelt großtechnisch realisiert, trotzdem besteht insbesondere zur einfachen und wirtschaftlichen Rücklösung von Phosphaten aus Klärschlämmen und Aschen noch erheblicher Forschungsbedarf.

Author: A. Böhrnsen (2019)   Paper: profi

Pflanzenkohle statt Spurenelemente

Pflanzenkohle hat bei Verwendung als Bodenhilfsmittel vielfältige positive Effekte. Eingesetzt als Additiv im Biogasfermenter soll sie den Gärprozess stabilisieren und den Methanertrag steigern.

Author:
Anja Böhrnsen
Published:
2019
Paper:
profi
Pages
84-86
Link/Pdf:
https://www.profi.de/technisch/aus-dem-heft/pflanzenkohle-statt-spurenelemente-11686069.html
Author: C. Kammann, H. Schmidt (2017)   Paper: Interessengemeinschaft gesunder Boden

Pflanzenkohle als Werkzeug für eine nachhaltige Landwirtschaft?

Was ist Biokohle, was ist Pflanzenkohle? Neue Ergebnisse aus Forschung und Entwicklung werden in nachfolgendem Text erklärt. Die Autoren gehen auf die Verwendung von Pflanzenkohle in der Landwirtschaft ein, auf mögliche Risiken und die gesetzlichen Rahmenbedingungen.

Author:
Claudia Kammann und Hans-Peter Schmidt
Published:
2017
Paper:
Interessengemeinschaft gesunder Boden
Link/Pdf:
/fileadmin/pdf/Pflanzenkohle/Vortrag_Prof._Kamman__2.3.2017__Bodentag.pdf
Author: D. Steffens (2019)   Paper: Landwirtschaft ohne Pflug

Kohlenstoff in die Böden bringen

Im Amazonasbecken steigerte der Einsatz von verkohltem Kohlenstoff die Fruchtbarkeit und damit Ertragsfähigkeit ursprünglich karger Böden. Die Ureinwohner verwendeten ein Gemisch organischer Substanzen aus unter anderem Holzkohleresten, Exkrementen und Speiseabfällen als Dünger. Die so zu hoher Qualität aufgewerteten Böden werden als "Terra preta" bezeichnet. Nach deren Entdeckung lag der Gedanke nicht fern, diesen Effekt für Böden in anderen Gegenden wie Deutschland nutzbar zu machen. In einem Feldversuch in Hessen hat eine Forschungsgruppe der Universität Gießen die Wirksamkeit von verschiedenen Pflanzenkohlen auf die Bodenqualität untersucht. Dabei konnten Pflanzenkohlen die Wasserversorgung und Ertragsleistung der Pflanzen im semiariden Raum allerdings nicht verbessern. Auf jeden Fall kann Pflanzenkohle aber zur Sequestierung von Kohlenstoff beitragen.

Author:
Diedrich Steffens
Published:
2019
Paper:
Landwirtschaft ohne Pflug
Pages
36-39
Link/Pdf:
https://www.pfluglos.de/ausgaben/lop-2019/april-2019
Author: J. E. Thies, M. C. Rillig (2008)   Paper: ResearchGate

Merkmale von Pflanzenkohle: Biologische Eigenschaften

Jahrzehntelange Forschungsarbeiten in Japan und kürzlich durchgeführte Studien in den USA haben gezeigt, das Pflanzenkohle die Aktivität von verschiedenen wichtigen Boden-Mikroorganismen stimuliert. Unterschiedlich große Poren in Pflanzenkohle schaffen einen geeigneten Lebensraum für viele Mikroorganismen, indem sie diese vor Raubbau und Austrocknung schützen und viele ihrer vielfältigen Bedürfnisse an Kohlenstoff (C), Energie und Mineralstoffen decken (Saito und Muramoto, 2002; Warnock et al., 2007). Da die Bodenorganismen eine Vielzahl von Ökosystemleistungen erbringen, ist das Verständnis, wie die Zugabe von Pflanzenkohle zum Boden die Bodenökologie beeinflussen kann, von entscheidender Bedeutung, um sicherzustellen, dass die Bodenqualität und die Integrität des Subsystems Boden erhalten bleiben.

Author:
Janice E.Thies und Matthias C. Rillig
Published:
2008
Paper:
ResearchGate
Link/Pdf:
https://www.researchgate.net/publication/284041311_Characteristics_of_biochar_biological_properties

Decades of research in Japan and recent studies in the US have shown that biochar stimulates the activity of a variety of agriculturally important soil microorganisms and can greatly affect the microbiological properties of soils (Ogawa et al, 1983; Pietikäinen etal, 2000).The presence and size distribution of pores in biochar provides a suitable habitat for many microorganisms by protecting them from predation and desiccation and by providing many of their diverse carbon (C), energy and mineral nutrient needs (Saito and Muramoto, 2002;Warnock et al, 2007).With the interest in using biochar for promoting soil fertility, many scientific studies are being conducted to better understand how this affects the physical and chemical properties of soils and its suitability as a microbial habitat. Since soil organisms provide a myriad of ecosystem services, understanding how adding biochar to soil may affect soil ecology is critical for ensuring that soil quality and the integrity of the soil subsystem are maintained. Among the ecosystem services that soil microorganisms provide are decomposing organic matter; cycling and immobilizing inorganic nutrients; filtering and bio-remediating soil contaminants; suppressing and causing plant disease; producing and releasing greenhouse gases; and improving soil porosity, aggregation and water infiltration (Coleman, 1986;Thies and Grossman, 2006; Paul, 2007). As they interact with plants in the rhizosphere, bacteria, fungi, protozoa and nematodes strongly influence the ability of plants to acquire macro- and micronutrients. This may occur as a direct result of mutualistic associations between plant roots and microorganisms, such as with the arbuscular mycorrhizal (AM) fungi (Glomeromycota; Robson et al, 1994) or the nitrogen (N2)-fixing rhizobia bacteria; or through trophic interactions resulting in nutrient excretion by secondary feeders, such as protozoa and nematodes (Brussaard et al, 1990). Clearly, soil microbial activity strongly affects soil function and, consequently, crop growth and yield. The physical and chemical environment of biochar may alter many of these biological activities, discussed in detail below.
The nature and function of soil microbial communities change in response to many edaphic, climatic and management factors, especially additions of organic matter (Thies and Grossman, 2006). Amending soils with biochar is no exception. However, the way in which biochar affects soil biota may be distinct from other types of added organic matter because the stability of biochar makes it unlikely to be a source of either energy or cell C after any initial bio-oils or condensates have been decomposed (see Chapter 11). Instead, biochar changes the physical (see Chapter 2) and chemical (see Chapters 3 to 5) environment of the soil, which will,in turn, affect the characteristics and behaviour of the soil biota. The effects of biochar on the abundance, activity and diversity of soil organisms are the subjects of this chapter.This area of enquiry has lagged behind other areas of biochar research. Much of what is known about the biota in soils containing biochar results from the pioneering work of the Japanese researcher M. Ogawa and colleagues and from research on microbial communities in the Amazonian dark earths (ADE, also called ‘Terra Preta de Indio’) from Brazil. We include examples from these works here, with the aim of forecasting how both the soil flora and fauna populations may respond to biochar amendments and to suggest more fruitful avenues for future research.

 

Author: H. Schmidt et. al. (2019)   Paper: NCBI

Die Verwendung von Pflanzenkohle in der Tierernährung

Pflanzenkohle, d.h. verkohlte Biomasse ähnlich wie Holzkohle, wird seit vielen Jahrhunderten in der akuten medizinischen Behandlung von Tieren eingesetzt. Seit 2010 setzen Viehhalter Pflanzenkohle zunehmend als regelmäßiges Ergänzungsfuttermittel ein, um die Tiergesundheit zu verbessern, die Effizienz der Nährstoffaufnahme und damit die Produktivität zu steigern. Da Pflanzenkohle während des Verdauungsprozesses mit stickstoffreichen organischen Verbindungen angereichert wird, wird die ausgeschiedene Pflanzenkohlendüngung zu einem wertvolleren organischen Dünger, der bei der Lagerung und Ausbringung in den Boden geringere Nährstoffverluste und Treibhausgasemissionen verursacht.

Author:
Hans-Peter Schmidt , Nikolas Hagemann, Kathleen Draper und Claudia Kammann
Published:
2019
Paper:
NCBI
Link/Pdf:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679646/

Biochar, that is, carbonized biomass similar to charcoal, has been used in acute medical treatment of animals for many centuries. Since 2010, livestock farmers increasingly use biochar as a regular feed supplement to improve animal health, increase nutrient intake efficiency and thus productivity. As biochar gets enriched with nitrogen-rich organic compounds during the digestion process, the excreted biochar-manure becomes a more valuable organic fertilizer causing lower nutrient losses and greenhouse gas emissions during storage and soil application. Scientists only recently started to investigate the mechanisms of biochar in the different stages of animal digestion and thus most published results on biochar feeding are based so far on empirical studies. This review summarizes the state of knowledge up to the year 2019 by evaluating 112 relevant scientific publications on the topic to derive initial insights, discuss potential mechanisms behind observations and identify important knowledge gaps and future research needs. The literature analysis shows that in most studies and for all investigated farm animal species, positive effects on different parameters such as toxin adsorption, digestion, blood values, feed efficiency, meat quality and/or greenhouse gas emissions could be found when biochar was added to feed. A considerable number of studies provided statistically non-significant results, though tendencies were mostly positive. Rare negative effects were identified in regard to the immobilization of liposoluble feed ingredients (e.g., vitamin E or Carotenoids) which may limit long-term biochar feeding. We found that most of the studies did not systematically investigate biochar properties (which may vastly differ) and dosage, which is a major drawback for generalizing results. Our review demonstrates that the use of biochar as a feed additive has the potential to improve animal health, feed efficiency and livestock housing climate, to reduce nutrient losses and greenhouse gas emissions, and to increase the soil organic matter content and thus soil fertility when eventually applied to soil. In combination with other good practices, co-feeding of biochar may thus have the potential to improve the sustainability of animal husbandry. However, more systematic multi-disciplinary research is definitely needed to arrive at generalizable recommendations.

Author: R. Zhaoa et. al. (2015)   Paper: Science Direct

Auswirkungen von gealterten und frischen Pflanzenkohle auf den Säuregehalt des Bodens unter verschiedenen Inkubationsbedingungen

Pflanzenkohle hat positive Auswirkungen als Bodenversauerung, die ein globales Anliegen ist. Es wurden jedoch nur wenige Studien über die Wirkung von gealterter Pflanzenkohle auf die Bodenversauerung berichtet. Inkubationsmethoden mit unterschiedlichen Belüftungsbedingungen können unterschiedliche Auswirkungen auf die Bodenversauerung durch Pflanzenkohle hervorrufen. In dieser Studie wurden die Auswirkungen frischer und gealterter Pflanzenkohle auf die Änderung des Säuregehalts des Bodens mit verschiedenen Inkubationsmethoden analysiert.

Author:
Rudong Zhaoa, Neil Colesb, Zhe Konga, Jiaping Wuc
Published:
2015
Paper:
Science Direct
Pages
133-138
Link/Pdf:
https://www.sciencedirect.com/science/article/pii/S0167198714002232

Biocharhas positiveeffects as a soil acidityamendment which is a global concern. However,fewstudies have been reported on the effect of aged biochar on soil acidity. Incubation methods with different ventilation conditions may induce different effects on soil acidity amendment using biochar. This study analyzed the effects of fresh and aged biochars on soil acidity amendment with different incubation methods. Samples of typical acidic soil (plinthudults) and fresh Pinus massoniana bark were collected from the hilly red soil region of southern China and used to create biochar (PB) with the oxygen-limited pyrolysis method at 450C. A 4-month-aged PB (PBa) which was produced by a natural forest fire was collectedfromthesameareaasthatofbiocharPB.A69daysincubationexperimentwasconductedusing an improved incubation method. The treatments comprised 100g soil+2g PBa (PBA),100g soil+2g PB (ventilated incubation, PBV), 100g soil+2g PB (sealed incubation, PBS) and 100g soil only incubated under ventilated (CKV) and sealed (CKS) conditions. Soil pH was measured periodically. Soil exchangeable base cations, exchangeable acidity, exchangeable aluminum (Al3+) and cation exchange capacity(CEC)weremeasuredafterincubation.Throughouttheincubationperiod,PBandPBapositively enhanced soil pH (P<0.05), with PB exhibiting more remarkable effects. A similar effect was also observed for soil exchangeable Al3+ and exchangeable acidity. After incubation, soil pH values of PBV (5.050.02) and PBS (4.990.03) were than the value of PBA (4.980.03), with nonsignificant differences (P>0.05) between values in PBV and PBS. PB addition improved soil exchangeable base cations and base saturation compared to PBa addition. Soil CEC levels in PBA, PBV, and PBS were not significantlydifferentfromthose in CKV and CKS,but CEC in PBV and PBSwere significantlyhigher than theCECinPBA.AllparametersinPBVwerenotsignificantlydifferentfromtheparametersinPBS.Biochar PB can be used to amend soil acidity, but the efficiency declines to a certain extent if biochar PB has undergone a short-term aging before being added to soils. The different ventilation conditions had little influence on soil acidity amendment using biochar. 

Author: H. M. Krause (2019)   Paper:

Auswirkungen der Bodenbewirtschaftungspraktiken auf die N2O-Produktion und Reduzierung der mikrobiellen Gemeinschaften

Lachgas (N2O) ist ein wichtiges Treibhausgas das auch zum Abbau von stratosphärischem Ozon beiträgt. Hauptsächlich durch menschliches Einwirken auf den globalen Stickstoffzyklus stieg im letzten Jahrzehnt die atmosphärische N2O Konzentrationen kontinuierlich an. Im Jahr 2015 betrug die atmosphärische N2O Konzentration 121% im Vergleich zum vorindustriellen Zeitalter. Da der Grossteil der menschlich verursachten N2O Emissionen aus landwirtschaftlich genutzten Böden stammen ist die Entwicklung von Bodenbearbeitungsmethoden die N2O Emissionen mindern können eine wichtige Herausforderung für den gesamten landwirtschaftlichen Sektor.

Author:
Hans-Martin Krause
Published:
2019
Paper:
Link/Pdf:
/fileadmin/images/Studien/2017_NO2_reduction_-_Krause_PhD_thesis.pdf

Lachgas (N2O) ist ein wichtiges Treibhausgas das auch zum Abbau von stratosphärischem Ozon beiträgt. Hauptsächlich durch menschliches Einwirken auf den globalen Stickstoffzyklus stieg im letzten Jahrzehnt die atmosphärische N2O Konzentrationen kontinuierlich an. Im Jahr 2015 betrug die atmosphärische N2O Konzentration 121% im Vergleich zum vorindustriellen Zeitalter. Da der Grossteil der menschlich verursachten N2O Emissionen aus landwirtschaftlich genutzten Böden stammen ist die Entwicklung von Bodenbearbeitungsmethoden die N2O Emissionen mindern können eine wichtige Herausforderung für den gesamten landwirtschaftlichen Sektor. Stickstoff wird um Boden vor allem mikrobiell umgesetzt. Innerhalb des mikrobiellen Stickstoffzyklus kann N2O durch mehrere Prozesse entstehen. Dabei werden Nitrifikation und Denitrifikation als die wichtigsten N2O bildenden Prozesse angesehen. Während Nitrifikation hauptsächlich unter oxischen Bedingungen stattfindet, wird die Denitrifikation durch sauerstofflimitierende Bedingungen begünstigt. Der letzte Schritt der Denitrifikation, die Reduktion von N2O zu N2 stellt die einzige bekannte biologische N2O Senke dar. Um eine klimafreundliche Landwirtschaft entwickeln zu können ist es daher unabdinglich ein grundlegendes Verständnis über die Auswirkung von Bodenbearbeitungsmethoden auf N2O produzierende und reduzierende Bodenbakterien zu bekommen. Mehrere Bodenbearbeitungsmethoden wurden als mögliche Strategien vorgeschlagen um N2O Emissionen zu verringern. Gegenstand diese Arbeit waren die reduzierte Bodenbearbeitung, der biologische Landbau und die Ausbringung von Pflanzenkohle. Um den Einfluss der verschiedenen Bodenbearbeitungsmethoden auf N2O Emissionen und N2O produzierende und reduzierende Bodenbakterien zu untersuchen wurden sowohl Inkubationsexperimente unter kontrollierten Bedingungen als auch Experimente im Feld durchgeführt. Funktionelle mikrobielle Gemeinschaften, die an Stickstoffumsetzungen beteiligt sind, wurden mit Hilfe von molekularbiologischen Methoden wie der quantitativen Polymerase-Kettenreaktion (qPCR) und modernen Sequenzierungstechniken untersucht. Weiterhin wurden 15N Markierungstechniken angewandt um die Herkunft von N2O und das N2O/(N2O+N2) Verhältnis in Böden unter biologischem und konventionellen Landbau zu bestimmen. Unter Reduzierter Bodenbearbeitung konnte in den tieferen Bodenschichten ein höheres Potenzial zur N2O Bildung durch Nitrifikation festgestellt werden. In Gegensatz dazu war eine erhöhte Abundanz von N2O reduzierenden Bakterien in der oberen Bodenschicht zu beobachten welche auch mit reduzierten N2O Emissionen in Verbindung gebracht werden konnten. Boden der unter biologischen Anbaumethoden bewirtschaftet wurde zeigte ein höheres Potenzial N2O zu emittieren, aber im Gegensatz zum konventionellen Landbau konnte die Funktionalität der N2O-Reduktase langfristig und ohne zusätzliche Kalkung durch einen stabilen Boden pH-Wert gewährleistet werden. Neben einer deutlichen Minderung von N2O Emissionen bewirkte die Zugabe von Pflanzenkohle einen Anstieg an stickstofffixierenden und N2O reduzierenden Bakterien. Im Feld konnte eine Veränderung der Gemeinschaftsstruktur von N2O reduzierenden Bakterien über eine gesamte Vegetationsperiode festgestellt werden. Durch die Zugabe von Pflanzenkohle wurden jene N2O reduzierenden Bakterien gefördert denen die genetische Fähigkeit N2O zu produzieren fehlte und somit als N2O Senke wirksam werden können. Unter allen untersuchten Bodenbearbeitungsmethoden war die Zugabe von Pflanzenkohle die wirksamste Strategie N2O Emissionen zu vermindern. Die Aktivität, Abundanz oder Struktur von N2O reduzierenden Bakteriengemeinschaften konnte in allen Experimenten mit den N2O Emissionen in Verbindung gebracht werden. Die deutet darauf hin, dass die Funktionalität dieser Gemeinschaft durch das Einwirken von Bodenbearbeitungsmethoden auf chemische und physikalische Bodeneigenschaften beeinflussbar ist. Daher scheint eine Fokussierung auf Bodenbearbeitungsmethoden welche biologische N2O Reduktion fördert ein vielversprechender Ansatz zu sein N2O Emissionen aus landwirtschaftlichen Böden zu verringern.

Author: McMichael et al. (2014)   Paper: Proceedings of the Royal Society, Volume 281

Prediction of pre-Columbian anthropogenic soils in the Amazon

The extent and intensity of the pre-Columbian influences on the lowland Amazon remained uncertain and controversial. The presence of nutrient-enriched Terra Preta soils is widely regarded as an indication of long-term colonization and site fidelity of the first settlers.

Author:
C. H. McMichael, M. W. Palace, M. B. Bush, B. Braswell, S. Hagen, E. G. Neves, M. R. Silman, E. K. Tamanaha, C. Czarnecki
Published:
2014
Paper:
Proceedings of the Royal Society, Volume 281
Link/Pdf:
/fileadmin/pdf/Pflanzenkohle/Braswell_et_al._2014.pdf

The extent and intensity of pre-Columbian impacts on lowland Amazonia have remained uncertain and controversial. Various indicators can be used to gauge the impact of pre-Columbian societies, but the formation of nutrient-enriched terra preta soils has been widely accepted as an indication of long-term settlement and site fidelity. Using known and newly discovered terra preta sites and maximum entropy algorithms (Maxent), we determined the influence of regional environmental conditions on the likelihood that terra pretas would have been formed at any given location in lowland Amazonia. Terra pretas were most frequently found in central and eastern Amazonia along the lower courses of the major Amazonian rivers. Terrain, hydrologic and soil characteristics were more important predictors of terra preta distributions than climatic conditions. Our modelling efforts indicated that terra pretas are likely to be found throughout ca 154 063 km2 or 3.2% of the forest. We also predict that terra preta formation was limited in most of western Amazonia. Model results suggested that the distribution of terra preta was highly predictable based on environmental parameters. We provided targets for future archaeological surveys under the vast forest canopy and also highlighted how few of the long-term forest inventory sites in Amazonia are able to capture the effects of historical disturbance.

 

Author: Yang Ding, Yunguo Liu et al. (2016)   Paper: Agronomy for Sustainable Development

Biochar to improve soil fertility. An overview.

Soil mineral degradation is a major problem mainly due to soil erosion and nutrient leaching. The addition of biochar is a solution, as it has been shown that biochar improves soil fertility.

Author:
Yang Ding, Yunguo Liu et al.
Published:
2016
Paper:
Agronomy for Sustainable Development
Link/Pdf:
https://link.springer.com/article/10.1007/s13593-016-0372-z

Soil mineral depletion is a major issue due mainly to soil erosion and nutrient leaching. The addition of biochar is a solution because biochar has been shown to improve soil fertility, to promote plant growth, to increase crop yield, and to reduce contaminations. We review here biochar potential to improve soil fertility. The main properties of biochar are the following: high surface area with many functional groups, high nutrient content, and slow-release fertilizer. We discuss the influence of feedstock, pyrolysis temperature, pH, application rates, and soil types. We review the mechanisms ruling the adsorption of nutrients by biochar.

 

Author: Lehmann et al.   Paper: Nature Communications

Sustainable biochar to curb global climate change

The production of biochar (the carbonaceous solid formed by pyrolysis of biomass) and its storage in soils may potentially help to mitigate climate change by binding carbon, while providing energy and crop yields.

Author:
Lehmann et al.
Published:
Paper:
Nature Communications
Link/Pdf:
/fileadmin/pdf/Pflanzenkohle/Lehmann_et_al__2010__Sustainable_biochar_to_mitigate_global_climate_change.pdf

Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO2), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO2-C equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO2-Ce, without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset.

 

Author: Wang et al. (2011)   Paper: Environmental Science and Technology, Volume 47

Insight into the effect of biochar on the composting of manure: Evidence for the relationship between N2O emission and denitrification

In this study, the effects of biochar changes during the composting of pig manure were examined to investigate the correlation between N2O emission and the amount of denitrifying bacteria.

Author:
Wang et al.
Published:
2011
Paper:
Environmental Science and Technology, Volume 47
Pages
7341–7349
Link/Pdf:
http://pubs.acs.org

Although nitrous oxide (N2O) emissions from composting contribute to the accelerated greenhouse effect, it is difficult to implement practical methods to mitigate these emissions. In this study, the effects of biochar amendment during pig manure composting were investigated to evaluate the inter-relationships between N2O emission and the abundance of denitrifying bacteria. Analytical results from two pilot composting treatments with (PWSB, pig manure + wood chips + sawdust + biochar) or without (PWS, pig manure + wood chips + sawdust) biochar (3% w/w) demonstrated that biochar amendment not only lowered NO2-N concentrations but also lowered the total N2O emissions from pig manure composting, especially during the later stages. Quantification of functional genes involved in denitrification and Spearman rank correlations matrix revealed that the N2O emission rates correlated with the abundance of nosZ, nirK, and nirS genes. Biochar-amended pig manure had a higher pH and a lower moisture content. Biochar amendment altered the abundance of denitrifying bacteria significantly; less N2O-producing and more N2O-consuming bacteria were present in the PWSB, and this significantly lowered N2O emissions in the maturation phase. Together, the results demonstrate that biochar amendment could be a novel greenhouse gas mitigation strategy during pig manure composting.

 

Author: Case et al. (2014)   Paper: Global Change Biology Bioenergy

Can biochar reduce greenhouse gas emissions from a Miscanthus bioenergy harvest?

Energy production from bioenergy plants can significantly reduce greenhouse gas emissions by substituting fossil fuels. Biochar incorporation into the soil can further reduce the net climate gas production of bioenergy crop cultivation.

Author:
Case et al.
Published:
2014
Paper:
Global Change Biology Bioenergy
Pages
76-89

Energy production from bioenergy crops may significantly reduce greenhouse gas (GHG) emissions through substitution of fossil fuels. Biochar amendment to soil may further decrease the net climate forcing of bioenergy crop production, however, this has not yet been assessed under field conditions. Significant suppression of soil nitrous oxide (N2O) and carbon dioxide (CO2) emissions following biochar amendment has been demonstrated in short-term laboratory incubations by a number of authors, yet evidence from long-term field trials has been contradictory. This study investigated whether biochar amendment could suppress soil GHG emissions under field and controlled conditions in a Miscanthus × Giganteus crop and whether suppression would be sustained during the first 2 years following amendment. In the field, biochar amendment suppressed soil CO2 emissions by 33% and annual net soil CO2 equivalent (eq.) emissions (CO2, N2O and methane, CH4) by 37% over 2 years. In the laboratory, under controlled temperature and equalised gravimetric water content, biochar amendment suppressed soil CO2 emissions by 53% and net soil CO2 eq. emissions by 55%. Soil N2O emissions were not significantly suppressed with biochar amendment, although they were generally low. Soil CH4 fluxes were below minimum detectable limits in both experiments. These findings demonstrate that biochar amendment has the potential to suppress net soil CO2 eq. emissions in bioenergy crop systems for up to 2 years after addition, primarily through reduced CO2 emissions. Suppression of soil CO2 emissions may be due to a combined effect of reduced enzymatic activity, the increased carbon-use efficiency from the co-location of soil microbes, soil organic matter and nutrients and the precipitation of CO2 onto the biochar surface. We conclude that hardwood biochar has the potential to improve the GHG balance of bioenergy crops through reductions in net soil CO2 eq. emissions.

 

Author: Peake et al. (2014)   Paper: Geoderma

Quantification of the influence of biochar on the physical and hydrological properties of different soils

This paper presents a novel attempt to investigate the impact of biochar (applied at 0.1, 0.5 and 2.5%) on the physical properties of the soil in relation to quantified soil variables.

Author:
Peake et al.
Published:
2014
Paper:
Geoderma
Pages
182-190
Link/Pdf:
https://www.sciencedirect.com/science/article/pii/S0016706114002651

Evidence suggests that biochar influences soil physical properties, especially soil hydrology, yet relatively little data exists on this topic, especially in relation to soil type or characteristics. This paper presents a novel attempt at analysing the influence of biochar (applied at 0.1, 0.5 and 2.5%) on the physical properties of soil with respect to quantified soil variables. Pot experiments were used to establish the effect of biochar on: bulk density, soil moisture content at field capacity and available water capacity. The aggregate effect of biochar across all soils was significant (P < 0.01) for all of the properties. With increasing amount of biochar, changes to bulk density, field capacity and available water were more pronounced. In the 2.5% treatments these changes ranged from − 4.2% to − 19.2%, 1.3% to 42.2% and 0.3% to 48.4%, respectively. Regression revealed that soil silt content negatively moderated the influence of biochar on field capacity and available water capacity. The results suggested that medium (20 t ha− 1) and high (100 t ha− 1) biochar applications could improve water-holding capacity (by up to 22%) and ameliorate compaction (by up to 15%) and that soils low in silt are likely to be more hydrologically responsive to biochar application.

 

Author: Schmidt et al. (2015)   Paper: Agriculture

Quadrupling the pumpkin yield in response to the low dose root-urine application of urinary-enhanced biochar to a fertile tropical soil

This study shows for the first time that low-dose root zone application of urea-reinforced biochar resulted in a significant increase in yield in a fertile silt loam soil.

Author:
Schmidt et al.
Published:
2015
Paper:
Agriculture
Pages
723-741
Link/Pdf:
/fileadmin/pdf/Pflanzenkohle/Schmidt-etal-2015_Agriculture-05-00723.pdf

A widely abundant and invasive forest shrub, Eupatorium adenophorum, was pyrolyzed in a cost-efficient flame curtain kiln to produce biochar. The resulting biochar fulfilled all the requirements for premium quality, according to the European Biochar Certificate. The biochar was either applied alone or mixed with fresh cow urine (1:1 volume) to test its capacity to serve as slow release fertilizer in a pumpkin field trial in Nepal. Treatments included cow-manure compost combined with (i) urine-only; (ii) biochar-only or (iii) urine-loaded biochar. All materials were applied directly to the root zone at a biochar dry matter content of 750 kg·ha −1 before seeding. The urine-biochar treatment led to a pumpkin yield of 82.6 t·ha −1 , an increase of more than 300% compared OPEN ACCESS Agriculture 2015, 5 724 with the treatment where only urine was applied, and an 85% increase compared with the biochar-only treatment. This study showed for the first time that a low-dosage root zone application of urine-enhanced biochar led to substantial yield increases in a fertile silt loam soil. This was tentatively explained by the formation of organic coating of inner pore biochar surfaces by the urine impregnation, which improved the capacity of the biochar to capture and exchange plant nutrients.

 

Author: Wang et al. (2014)   Paper: Journal of Analytical and Applied Pyrolysis

Characterization of biochar from rapid pyrolysis and its effect on the chemical properties of the tea garden soil

The properties and application of biochar from conventionally slow pyrolysis have been much studied, but biochar by-product in bio-oil production, produced by rapid pyrolysis, has rarely been studied.

Author:
Wang et al.
Published:
2014
Paper:
Journal of Analytical and Applied Pyrolysis
Pages
375-381
Link/Pdf:
https://www.sciencedirect.com/science/article/pii/S0165237014002563

The characteristics and application of biochar from conventionally slow pyrolysis have been studied a lot, but biochar, as a byproduct in the bio-oil production process, produced by fast pyrolysis was rarely studied. This work assessed the characterization and utilization of biochars derived from rice husk (RH) and elm sawdust (ES) by fast pyrolysis. Incubation experiment of rice husk biochar (RHB) and acid soil in a controlled cabinet was carried out to test the effect of biochar on soil available elements. The volatile and fixed carbon was 2.2 and 1.7-fold respectively higher in elm sawdust biochar (ESB) than those in RHB, but the ash content was 4.2-fold higher in RHB than that in ESB. Although the C, H, N, and O contents were significantly varied in two biochars, the ratio H/C and O/C were nearly the same. The Fourier Transform Infrared Spectroscopy (FTIR) results revealed that RHB had more functional groups than ESB. More surface area was found in RHB (78.15 m2 g−1) than ESB (0.22 m2 g−1) by BET test. Incorporation of the biochar improved the quality of acid soil properties. The levels of soil pH, K, Ca, Mg, Na and total C and N increased while the Al and Pb contents decreased. Total carbon and potassium increased by 72% and by 6.7-fold respectively over the control at 4% of rice husk biochar adding level.

 

Author: Mukherjee & Zimmermann (2013)   Paper: Geoderma

Organic carbon and nutrient release from a range of laboratory-produced biochar and biochar-soil mixtures

Here, nutrient release from a variety of new and aged biochar, pure and mixed with soil, is investigated using batch extraction and column leaching.

Author:
Mukherjee & Zimmermann
Published:
2013
Paper:
Geoderma
Pages
193-194
Link/Pdf:
http://users.clas.ufl.edu/azimmer/pdf/Mukh%20and%20Zim13_biochar%20leaching+SI.pdf

Biochar has shown promise as a soil amendment that increases carbon sequestration and fertility, but its effects on dissolved organic carbon (DOC), nitrogen (N) and phosphorus (P) cycling and loss is not well understood. Here, nutrient release from a variety of new and aged biochars, pure and mixed with soils, is examined using batch extraction and column leaching. In successive batch extractions of biochar, cumulative losses were about 0.1–2, 0.5–8 and 5–100% of the total C, N and P initially present, respectively, with greater releases from biochars made at lower temperature and from grass. Ammonium was usually the most abundant N form in leachates but nitrate was also abundant in some biochars, while organic N and P represented as much as 61% and 93% of the total N and P lost, respectively. Release of DOC, N and P into water was correlated with biochar volatile matter content and acid functional group density. However, P release via Mehlich-1 extraction was more strongly related to ash content, suggesting a mineral-associated P fraction. Columns with soil/biochar mixtures showed evidence of both soil nutrient sorption by biochar and biochar nutrient sorption by soil, depending upon biochar and soil type. This study demonstrates that biochars contain a range of nutrient forms with different release rates, explaining biochar's variable effect on soil fertility with soil and crop type and over time.

 

Protect Nature

Support our projects and protect habitats in Germany and around the world.

Naturefund e. V.
Karl-Glässing-Straße 5
65183 Wiesbaden

+49 611 504 581 011
info(at)naturefund.de

Jetzt spenden

Registriert beim Registergericht Wiesbaden, VR 3739

Umsatzsteuer-Identifikationsnummer: DE 293241718

Freistellungsbescheid: Als gemeinnützige Körperschaft
befreit von der Körperschaftssteuer gem. §5 Abs.1 Nr.9 KStG
unter der Steuernummer 43/250/76281.

Ihre Spende an Naturefund kann steuerlich abgesetzt werden.