Kohlenstoffbindung in Feuchtgebieten

Feuchtgebiete bedecken schätzungsweise 5-8% der Erdoberfläche und enthalten 35% des weltweiten terrestrischen Kohlenstoffs. Feuchtgebiete sind unglaublich wichtige Systeme für Wasser-, Nährstoff- und Kohlenstoffkreisläufe, für die Wasserreinigung, für den Hochwasserschutz und für die Biodiversität. Kohlenstoffreiche organische Sedimente werden in Feuchtgebieten abgelagert und gespeichert.


Allgemeine Studien

Mündungsgebiete und salzhaltige Feuchtgebiete

Torfmoore

Prärie-Feuchtgebiete

Weitere Feuchtgebiete

 

Natürliches Gleichgewicht gestört

Feuchtgebiete können zudem wichtige Treibhausgase wie Stickstoffoxide und Methan ausstoßen und der Ausgleich von Bindung und Emissionen ist ein wichtiger Aspekt, der quantifiziert und untersucht werden muss. Die Rodung und Trockenlegung von Feuchtgebieten für die landwirtschaftliche Nutzung oder Urbanisierung stört das natürliche Gleichgewicht des Kohlenstoffkreislaufes in diesem System. Dies kann zu einem deutlichen Rückgang des gespeicherten organischen Kohlenstoffes führen und zu einem Anstieg von Kohlenstoffdioxid in der Luft.

Verschiedene Feuchtgebietstypen

Die Bedeutung von Feuchtgebieten ist für viele Aspekte und Ökosystemfunktionen so groß, dass die Ramsar Convention on Wetlands 1975 in kraft getreten ist. Dieses Abkommen ist das einzige globale Umweltabkommen, das sich nur mit einem einzigen Ökosystem beschäftigt. Mitgliedsstaaten der Ramsar Convention umfassen alle geographischen Regionen der Erde. Die Ramsar Convention erkennt fünf verschiedene Typen von Feuchtgebieten an: marine Feuchtgebiete, Feuchtgebieten an Flussmündungen, Feuchtgebiete an Seen, Flussmarsch und Feuchtgebiete die nicht von Gezeiten beeinflusst werden.

Das IPCC wetlands supplement definiert acht Kategorien von Feuchtgebieten: Torfmoore und organische Böden, Torfmoore unter Bewirtschaftung für die Torfproduktion, Reisanbau, Küstenfeuchtgebiete, binnenländische Feuchtgebiet mit Mineralböden, binnenländische salzhaltige Feuchtgebiete, errichtete Feuchtgebiete zur Abwasseraufbereitung und permanent überflutete Gebiete.


Allgemeine Studien zu Feuchtgebieten

The Role of Wetlands in the Carbon Cycle

Feuchtgebiet

Feuchtgebiet

Foto: Naturefund

In dieser Studie wird der Zusammenhang zwischen Klima und Feuchtgebieten deutlich und die Kohlenstoffbindung von verschieden Feuchtgebietstypen wird ersichtlich.

Kenndaten  

Autor: J. Foster et al.

Jahr: 2012

Zeitschrift: Issues paper developed by the Department of Sustainability, Environment, Water, Population and Communities in consultation with the Wetlands and Waterbirds Taskforce.

Linkhttp://www.environment.gov.au/system/files/resources/b55b1fe4-7d09-47af-96c4-6cbb5f106d4f/files/wetlands-role-carbon-cycle.pdf 

Zusammenfassung (engl.):

Wetlands play an important role in landscape function, including cycling of carbon, water and nutrients, food and fibre production, water purification, regulation of flows, provision of habitats, and tourism and recreation services.

The role of wetlands in carbon sequestration and storage has generally been under-estimated. Wetlands cover approximately six to nine per cent of the Earth’s surface and contain about 35 per cent of global terrestrial carbon. As wetlands are centres of high productivity in the landscape, they have a high capacity to sequester and store carbon. Clearing or drainage of wetlands can lead to large losses of stored organic carbon to atmospheric carbon dioxide.

Greater consideration needs to be given to the roles of wetlands as carbon sources, sinks and storages, when designing climate protection and natural resource programs. Information on the functions of specific types of Australian wetlands is required, to enable better evaluation of their contribution to climate change mitigation and adaptation and to assist in design of programs for their protection, enhancement and restoration for multiple benefits.

nach oben

Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands

Moor

Moor

Foto: Naturefund

Ein Guide zur methodischen Arbeit an Feuchtgebieten mit Fokus auf der Vernässung und Wiederherstellung von Torfmoor

Kenndaten

Autor: T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda

Jahr: 2014

ZeitschriftSupplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. IPCC (ed.), Switzerland

Linkhttp://www.ipcc-nggip.iges.or.jp/home/wetlands.html 

Zusammenfassung (engl.):

The Wetlands Supplement was developed in accordance with the "Procedures for the preparation, review, acceptance, adoption, approval and publication of IPCC Reports" and the decision at the 35th Session of the IPCC. Review is an essential part of the IPCC process to ensure objective and complete assessment of the current information. In the course of the multi-stage review process - first by experts and then by governments and experts - both expert reviewers and governments are invited to comment on the accuracy and completeness of the scientific/technical/socio-economic content and the overall balance of the drafts.

nach oben


Mündungsgebiete und salzhaltige Feuchtgebiete

Global carbon sequestration in tidal, saline wetland soils

Aue

Aue

Foto: Naturefund

Diese Studie versucht die Menge an Kohlenstoff zu berechnen, die in den Böden von Salzmarschen und Mangrovensumpf gespeichert werden.

Kenndaten

Autor: G. L. Chmura, S. C. Anisfeld, D. R. Cahoon, J. C.  Lynch

Jahr: 2003

ZeitschriftGlobal Biogeochemical Cycles 17.4

Seite: 1- 12

Linkhttp://onlinelibrary.wiley.com/doi/10.1029/2002GB001917/pdf 

Zusammenfassung (engl.):

A study on compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. Results showed that the combined wetlands store at least 44.6 Tg C yr1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area.

nach oben

Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia

Feuchtgebiet

Feuchtgebiet

Foto: Naturefund

In dieser Studie werden die Kohlenstoffbindungsraten von ungestörten natürlichen Feuchtgebieten in einem Mündungsgebiet in Australien quantifiziert.

Kenndaten

Autor: A. J. Howe, J. F. Rodriguez, P. M. Saco

Jahr: 2009

ZeitschriftEstuarine Coastal and Shelf Science 84.1

Seite: 75-83

Linkhttp://www.sciencedirect.com/science/article/pii/S0272771409002856 

Zusammenfassung (engl.):

Disturbed and undisturbed estuarine wetlands of the Hunter estuary, New South Wales, Australia were selected as the study sites for this research. Vertical accretion rates of estuarine substrates were combined with soil carbon concentrations and bulk densities to determine the carbon store and carbon sequestration rates of the substrates tested. Relationships between estuary water level, soil evolution and vertical accretion were also examined.

The carbon sequestration rate of undisturbed wetlands was lower (15% for mangrove and 55% for saltmarsh) than disturbed wetlands, but the carbon store was higher (65% for mangrove and 60% for saltmarsh). The increased carbon sequestration rate of the disturbed wetlands was driven by substantially higher rates of vertical accretion (95% for mangrove and 345% for saltmarsh). Estuarine wetland carbon stores were estimated at 700–1000 Gg C for the Hunter estuary and 3900–5600 Gg C for New South Wales. Vertical accretion and carbon sequestration rates of estuarine wetlands in the Hunter are at the lower end of the range reported in the literature. The comparatively high carbon sequestration rates reported for the disturbed wetlands in this study indicate that wetland rehabilitation has positive benefits for regulation of atmospheric carbon concentrations, in addition to more broadly accepted ecosystem services.

nach oben

Carbon sequestration and nutrient (nitrogen, phosphorus) accumulation in river-dominated tidal marshes, Georgia, USA

Feuchtgebiet

Feuchtgebiet

Foto: Naturefund

Kohlenstoff und Nährstoffe im Boden eines Mündungsgebiet in Georgia wurden gemessen, um den Einfluss vom Salzgehalt auf C,N und P Anreicherung zu bewerten.

Kenndaten

Autor: M. J. Loomis, C. B. Craft

Jahr: 2010

ZeitschriftSoil Science Society of America Journal 74.3

Seite: 75-83

Link: http://www.indiana.edu/~craftlab/files/pdfs/craft_sssaj_reprint.pdf

Zusammenfassung (engl.):

Soil organic C, N, and P were measured in salt, brackish, and tidal freshwater marshes in river-dominated estuaries (Ogeechee, Altamaha, and Satilla) of the Georgia coast to evaluate the effects of salinity on C, N, and P storage and accumulation. Tidal freshwater marshes had greater concentrations of organic C (10.81% w/w) and N (0.71% w/w) than brackish (7.71% C, 0.50% N) or salt (5.95% C, 0.35% N) marshes. Soil accretion rates of 137Cs were greater in tidal freshwater (4.78 mm yr−1) and brackish marshes (4.41 mm yr−1) than in salt marshes (1.91 mm yr−1). Consequently, organic C and N accumulation was greater in tidal freshwater (124 and 8.2 g m−2 yr−1) and brackish (93 and 6.5 g m−2 yr−1) marshes than salt marshes (40 and 2.4 g m−2 yr−1).

Phosphorus accumulation was greater in the brackish marshes. Lower salinity tidal freshwater and brackish marshes remove more C, N, and P; however, salt marshes dominate the spatial extent of the study area (60%) vs. brackish (33%) and tidal freshwater marshes (7%). Combining measurements of C, N, and P accumulation with tidal marsh area, we estimated that tidal freshwater, brackish, and salt marshes stored or removed the equivalent of 2 to 20% of watershed N inputs entering the estuaries from the terrestrial landscape. After accounting for N2 fixation and denitrification, tidal marshes collectively removed the equivalent of 13 to 32% of the N entering estuaries. Tidal marshes, especially tidal freshwater and brackish marshes, are important for improving water quality and decreasing the impacts of N eutrophication of estuarine ecosystems.

nach oben


Torfmoore

Carbon storage of Caimpugan Peatland in Agusan Marsh Philippines and its Role Greenhouse Gas Mitigation

Feuchtwiese

Feuchtwiese

Foto: Naturefund

In dieser Studie wird die Kohlenstoffspeicherung des Caimpugan Torfmoores berechnet und die Bedeutung des Bodens als Kohlenstoffsenke deutlich.

Kenndaten

Autor: V. L. B. Alibo, R. D. Lasco

Jahr: 2012

ZeitschriftJournal of Environmental Science and Management 15.2

Seite: 50-58

Linkhttp://journals.uplb.edu.ph/index.php/JESAM/article/view/829/758 

Zusammenfassung (engl.):

Globally, peatlands have a high potential in mitigating climate change, but no study has been done on this in the Philippines. This study estimated the amount of stored carbon (C) in the Caimpugan peatland, Agusan Marsh.  In Tall Pole Forest, Intermediate Forest, and the Pygmy Forests in two locations in the peatland, the aboveground C  stocks were measured in standing trees, understorey, herbaceous vegetation, and litter. In addition, belowground C  stocks were also measured in peat soils at different horizons. Non-destructive sampling was done for trees > 5 cm dbh  using allometric equations. Total soil organic C was determined using Flash Elemental Analyzer 1112 Series Carbon  Analyzer. A two-way ANOVA was used to compare estimated stored C among selected vegetation types with location  as the replication.

The estimated aboveground C stock of Caimpugan peatland was 22.9 M t of C within its 5, 487 ha area with an estimated 3,000-6,000 t of C per hectare. The estimated mean belowground C stock (4,659  t C ha- ¹) was much higher than the mean aboveground C stock (53 tC ha- ¹). With the substantial amount of stored C in  Caimpugan peatland, its protection is fundamental to enhance its role in mitigating CO2 emissions.

nach oben

Northern Peatlands: Role in the carbon cycle and probable responses to climatic warming

Feuchtgebiet

Feuchtgebiet

Foto: Naturefund

Diese Studie befasst sich mit dem Einfluss des Klimawandels auf Torfmoore.

Kenndaten

Autor: E. Gorham

Jahr: 1991

Zeitschrift: Ecological Applications 1

Seite: 182-159

Linkhttp://www.esajournals.org/doi/abs/10.2307/1941811  

Zusammenfassung (engl.):

Boreal and subarctic peatlands comprise a carbon pool of 455 Pg that has accumulated during the postglacial period at an average net rate of 0.096 Pg/yr (1 Pg = 1015 g). Using Clymo's (1984) model, the current rate is estimated at 0.076 Pg/yr. Long- term drainage of these peatlands is estimated to be causing the oxidation to CO2 of a little more than 0.0085 Pg/yr, with combustion of fuel peat adding st0.026 Pg/yr. Emissions of CH4 are estimated to release n0.046 Pg of carbon annually. Uncertainties beset estimates of both stocks and fluxes, particularly with regard to Soviet peatlands.

The influence of water table alterations upon fluxes of both CO2 and CH4 is in great need of investigation over a wide range of peatland environments, especially in regions where permafrost melting, thermokarst erosion, and the development of thaw lakes are likely results of climatic warming. The role of fire in the carbon cycle of peatlands also deserves increased attention. Finally, satellite-monitoring of the abundance of open water in the peatlands of the West Siberian Plain and the Hudson/James Bay Lowland is suggested as a likely method of detecting early effects of climatic warming upon boreal and subarctic peatlands.

nach oben

Impact of global change and forest management on carbon sequestration in northern forested peatlands

Feuchtgebiet

Feuchtgebiet

Foto: Naturefund

Der Klimawandel wird durch die Veränderung von Temperatur und Niederschlag einen Einfluss auf Moore und deren Kohlenstoffbindung haben.

Kenndaten

Autor: M. Lavoie, D. Pare, Y. Bergeron

Jahr: 2005

ZeitschriftEnv. Rev. 13.4

Seite: 199-240

Linkhttp://www.nrcresearchpress.com/doi/abs/10.1139/a05-014 

Zusammenfassung (engl.):

Northern peatlands occupy approximately 4% of the global land surface and store about 30% of the global soil carbon (C). A compilation of C accumulation rates in northern peatlands indicated a long-term average rate of C accumulation of 24.1 g m–2 year–1. However, several studies have indicated that on a short-time scale and given the proper conditions, these ecosystems can exhibit very high rates of C accumulation (up to 425 g m–2 year–1).

Peatland development is related to precipitation and temperature, and climate change is expected to have an important impact on the C balance of this ecosystem. Given the expected climate change, we suggest that most of the northern forested peatlands located in areas where precipitation is expected to increase (eastern Canada, Alaska, FSU, and Fennoscandia) will continue to act as a C sink in the future. In contrast, forested peatlands of western and central Canada, where precipitation is predicted to decrease, should have a reduction in their C sequestration rates and (or) could become a C source.

These trends could be affected by forest management in forested peatlands and by changes in fire cycles. Careful logging, as opposed to wildfire, will facilitate C sequestration in forested peatlands and boreal forest stands prone to paludification while silvicultural treatments (e.g., drainage, site preparation) recommended to increase site productivity will enhance C losses from the soil, but this loss could be compensated by an increase in C storage in tree biomass.

nach oben

Sensitivity of C sequestration in reintroduced sphagnum to water-level variation in a cutaway peatland

Feuchtwiese

Feuchtwiese

Foto: Naturefund

Die Wiederherstellung von Vegetation und Ökosystem eines Torfmoores durch das Wiedereingliedern von Torfmoos führte zu vielversprechenden Ergebnissen.

Kenndaten

Autor: E.-S. Tuittila, H. Vasander, J. Laine 

Jahr: 2004

ZeitschriftRestoration Ecology 12.4

Seite: 483-493

Linkhttps://www.researchgate.net/publication/229981454

Zusammenfassung (engl.):

The reintroduction of Sphagnum fragments has been found to be a promising method for restoring mire vegetation in a cutaway peatland. Although it is known that moisture controls Sphagnum photosynthesis, information concerning the sensitivity of carbon dynamics on water-level variation is still scarce.

In a 4-year field experiment, the carbon dynamics of reintroduced Sphagnum angustifolium material in a restored (rewetted) cutaway peatland were studied. Cutaway peatland restored by Sphagnum reintroduction showed high sensitivity to variation in water level. Water level controlled both photosynthesis and respiration. Gross photosynthesis (PG) had a unimodal response to water-level variation with optimum level at −12 cm. The range of water level for high PG (above 60% of the maximum light-saturated PG) was between 22 and 1 cm below soil surface. Water level had a dual effect on total respiration. When the water level was below soil surface, peat respiration increased rapidly along the lowering water level until the respiration rate started to slow down at approximately −30 cm.

Contrary to peat respiration, the response of Sphagnum respiration to water-level variation resembled that of photosynthesis with an optimum at −12 cm. In optimal conditions, Sphagnum reintroduction turned the cutaway site from carbon source to a sink of 23 g C/m2 per season (mid-May to the end of September). In dry conditions, lowered photosynthesis together with the higher peat respiration led to a net loss of 56 g C/m2. Although the water level above the optimum amplitude restricted CO2 fixation, a decrease in peat respiration led to a positive CO2 balance of 9 g C/m2.

nach oben


Prärie-Feuchtgebiete

Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region

Feuchtgebiet

Feuchtgebiet

Foto: Naturefund

Prairie-Pothole-Feuchtgebiete sind wichtige Kohlenstoffspeicher, die durch Maßnahmen zur Wiederherstellung und Schutz dieser Ökosysteme einen Beitrag zur Verringerung von Treibhausgasen leisten können.

Kenndaten

Autor: P. Badiou, R. McDougal, D. Pennock, B. Clark

Jahr: 2011

ZeitschriftWetlands Ecology and Management 19.3

Seite: 237-256

Linkhttps://www.researchgate.net/publication/226422215_

Zusammenfassung (engl.):

North American prairie pothole wetlands are known to be important carbon stores. As a result there is interest in using wetland restoration and conservation programs to mitigate the effects of increasing greenhouse gas concentration in the atmosphere.

However, the same conditions which cause these systems to accumulate organic carbon also produce the conditions under which methanogenesis can occur. As a result prairie pothole wetlands are potential hotspots for methane emissions. The change in soil organic carbon density was examined as well as emissions of methane and nitrous oxide in newly restored, long-term restored, and reference wetlands across the Canadian prairies to determine the net GHG mitigation potential associated with wetland restoration.

The results indicate that methane emissions from seasonal, semi-permanent, and permanent prairie pothole wetlands are quite high while nitrous oxide emissions from these sites are fairly low. Increases in soil organic carbon between newly restored and long-term restored wetlands supports the conclusion that restored wetlands sequester organic carbon. Assuming a sequestration duration of 33 years and a return to historical SOC densities  a mean annual sequestration rate for restored wetlands of 2.7 Mg C ha−1year−1 or 9.9 Mg CO2 eq. ha−1 year−1 was estimated. Even after accounting for increased CH4 emissions associated with restoration our research indicates that wetland restoration would sequester approximately 3.25 Mg CO2 eq. ha−1year−1.

This research indicates that widescale restoration of seasonal, semi-permanent, and permanent wetlands in the Canadian prairies could help mitigate GHG emissions in the near term until a more viable long-term solution to increasing atmospheric concentrations of GHGs can be found.

nach oben

Carbon sequestration in wetlands

Feuchtgebiet

Feuchtgebiet

Foto: Naturefund

Eine Zusammenfassung der aktuellen Literatur über die Kohlenstoffbindung von Feuchtgebieten.

Kenndaten

Autor: Board of Water and Soil Resources staff

Jahr: 2008

Linkhttp://www.bwsr.state.mn.us/publications/Carbon-seq.pdf 

Zusammenfassung (engl.):

A summary about carbon flux and sequestration (carbon storage of a prairie pothole wetland at 1.23 mT/acre/year.), how climate change effects wetlands and how to increase the carbon storage. 

nach oben

Prairie wetlands and carbon sequestration Assessing sinks under the Kyoto Protocol

Feuchtgebiet

Feuchtgebiet

Foto: Naturefund

Dieser Report enthält viele Informationen über Kohlenstoffbindung in Feuchtgebieten und versucht das Thema Feuchtgebiete in den Kontext des Kyoto-Protokolls zu bringen.

Kenndaten

Autor: DWylynko

Jahr: 1999

ZeitschriftInternational Institute for Sustainable Development

Linkhttp://static.naturefund.de/Prairie_wetlands_and_carbon_sequestration.pdf

Zusammenfassung (engl.):

The paper describes human settlement and activities that have an impact on prairie wetlands, and gives an overview of carbon sequestration potential in wetlands and related upland areas in the Central Plains, including techniques available for measuring carbon cycling. A final section describes scientific and policy issues that must be taken into account in any effort to see wetlands included in the Kyoto Protocol. This document does not propose policy options for achieving wetland creation and restoration, but it acknowledges that such policies are critical to wetland conservation initiatives. 

nach oben


Weitere Feuchtgebiete

How strong is the current carbon sequestration of an Atlantic blanket bog?

Feuchtgebiet

Feuchtgebiet

Foto: Naturefund

Eine Analyse des Kohlenstoffgehalts eines fast intakten Deckenmoors in Glencar, County Kerry, Irland.

Kenndaten

Autor: A.-K. Koehler, M. Sottocornola, G. Kiely

Jahr: 2011

ZeitschriftGlobal Change Biology 17.1

Seite: 309-319

Linkhttp://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02180.x/abstract 

Zusammenfassung (engl.):

Although northern peatlands cover only 3% of the land surface, their thick peat deposits contain an estimated one-third of the world's soil organic carbon (SOC). Under a changing climate the potential of peatlands to continue sequestering carbon is unknown. This paper presents an analysis of 6 years of total carbon balance of an almost intact Atlantic blanket bog in Glencar, County Kerry, Ireland.

The three components of the measured carbon balance were: the land-atmosphere fluxes of carbon dioxide (CO2) and methane (CH4) and the flux of dissolved organic carbon (DOC) exported in a stream draining the peatland. The 6 years C balance was computed from 6 years (2003–2008) of measurements of meteorological and eddy-covariance CO2 fluxes, periodic chamber measurements of CH4 fluxes over 3.5 years, and 2 years of continuous DOC flux measurements. Over the 6 years, the mean annual carbon was −29.7±30.6 (±1 SD) g C m−2 yr−1 with its components as follows: carbon in CO2 was a sink of −47.8±30.0 g C m−2 yr−1; carbon in CH4 was a source of 4.1±0.5 g C m−2 yr−1 and the carbon exported as stream DOC was a source of 14.0±1.6 g C m−2 yr−1. For 2 out of the 6 years, the site was a source of carbon with the sum of CH4 and DOC flux exceeding the carbon sequestered as CO2. The average C balance for the 6 years corresponds to an average annual growth rate of the peatland surface of 1.3 mm yr−1.

nach oben

Wetlands, carbon, and climate change

Feuchtgebiet

Feuchtgebiet

Foto: Naturefund

Eine Studie über den Ausgleich von Kohlenstoffbindung und Treibhausgasemissionen in Feuchtgebieten.

Kenndaten

Autor: W. J. Mitsch, B. Bernal, A. M. Nahlik, U. Mander, L. Zhang, C. L. Anderson et al.

Jahr: 2012

ZeitschriftLandscape Ecology 28.4

Seite: 583-597

Linkhttp://link.springer.com/article/10.1007%2Fs10980-012-9758-8#page-1

Zusammenfassung (engl.): 

Wetland ecosystems provide an optimum natural environment for the sequestration and long-term storage of carbon dioxide (CO2) from the atmosphere, yet are natural sources of greenhouse gases emissions, especially methane. It is illustrated that most wetlands, when carbon sequestration is compared to methane emissions, do not have 25 times more CO2 sequestration than methane emissions; therefore, to many landscape managers and non specialists, most wetlands would be considered by some to be sources of climate warming or net radiative forcing.

It is shown by dynamic modeling of carbon flux results from seven detailed studies of temperate and tropical wetlands and from 14 other wetland studies  that methane emissions become unimportant within 300 years compared to carbon sequestration in wetlands. Within that time frame or less, most wetlands become both net carbon and radiative sinks.

Furthermore, it is estimated that the world’s wetlands, despite being only about 5–8 % of the terrestrial landscape, may currently be net carbon sinks of about 830 Tg/year of carbon with an average of 118 g-C m−2 year−1 of net carbon retention. Most of that carbon retention occurs in tropical/subtropical wetlands. It is demonstrated that almost all wetlands are net radiative sinks when balancing carbon sequestration and methane emissions and conclude that wetlands can be created and restored to provide C sequestration and other ecosystem services without great concern of creating net radiative sources on the climate due to methane emissions.

nach oben

Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions

Feuchtgebiet

Feuchtgebiet

Foto: Naturefund

Klima ist ein fundamentaler Faktor in tropischen Feuchtgebieten, da es die Hydrologie und das Kohlenstoffsystem beeinflusst und diese durch den Klimawandel verändern könnte.

Kenndaten

Autor: W. J. Mitsch, A. Nahlik, P. Wolski, B. Bernal, L. Zhang, L. Ramberg

Jahr: 2010

ZeitschriftWetlands Ecology and Management 18.5

Seite: 573-586

Linkhttp://connection.ebscohost.com/c/articles/53978938/tropical-wetlands-seasonal-hydrologic-pulsing-carbon-sequestration-methane-emissions

Zusammenfassung (engl.):

This paper summarizes the importance of climate on tropical wetlands. Regional hydrology and carbon dynamics in many of these wetlands could shift with dramatic changes in these major carbon storages if the inter-tropical convergence zone (ITCZ) were to change in its annual patterns.

The importance of seasonal pulsing hydrology on many tropical wetlands, which can be caused by watershed activities, orographic features, or monsoonal pulses from the ITCZ, is illustrated by both annual and 30-year patterns of hydrology in the Okavango Delta in southern Africa. Current studies on carbon biogeochemistry in Central America are attempting to determine the rates of carbon sequestration in tropical wetlands compared to temperate wetlands and the effects of hydrologic conditions on methane generation in these wetlands.

Using the same field and lab techniques, it was estimated that a humid tropical wetland in Costa Rica accumulated 255 g C m year in the past 42 years, 80% more than a similar temperate wetland in Ohio that accumulated 142 g C m year over the same period. Methane emissions averaged 1,080 mg-C m day in a seasonally pulsed wetland in western Costa Rica, a rate higher than methane emission rates measured over the same period from humid tropic wetlands in eastern Costa Rica (120-278 mg-C m day).

Tropical wetlands are often tuned to seasonal pulses of water caused by the seasonal movement of the ITCZ and are the most likely to be have higher fire frequency and changed methane emissions and carbon oxidation if the ITCZ were to change even slightly.

nach oben

Wetland soil organic matter composition in a Mediterranean semiarid wetland (Las Tablas de Daimiel, Central Spain): Insight into different carbon sequestration pathways

Feuchtgebiet

Feuchtgebiet

Foto: Naturefund

Herkunft und Umwandlung organischer Stoffe in Böden von semi-ariden Feuchtgebieten in Spanien werden von dominierender Vegetation und Feuer beeinflusst.

Kenndaten

Autor:  J. C. Rodriguez-Murillo, G. Almendros, H. Knicker

Jahr: 2011

ZeitschriftOrganic Geochemistry 42.7

Seite: 762-773

Linkhttp://digital.csic.es/handle/10261/57771 

Zusammenfassung (engl.):

Wetland soils from a Mediterranean semiarid wetland (Las Tablas de Daimiel, Central  Spain) were studied to characterize the organic matter (OM) and determine its origin  and transformation. Cross polarization magic angle spinning (CPMAS) 13C nuclear  magnetic resonance (NMR) spectroscopy and mathematical molecular mixing allowed  analysis of the organic fraction in terms of six generic components (carbohydrate,  protein, lignin, lipid, char and “carbonyl”).

Las Tablas is an active carbon sink, with  total organic carbon (TOC) content independent of soil OM quality; the TOC content  of the upper sediment is 10.0 ± 7.8%. The inorganic carbon content is also high (5.4 ±  3.3%) and is associated mainly with OM of aliphatic character. The OM composition is  variable; samples predominantly aliphatic (carbohydrate, lipid and protein) are  characteristic of the northern sector, whereas predominantly aromatic samples are  typical of the southern Tablas. A strong negative relationship between protein content  and lignin content was found, interpreted as a consequence of different proportions of  vascular vs. non-vascular (mostly charophyte) litter input.

The effect of perturbations is   apparent in the extended presence of char, particularly abundant in fire-prone areas. OM  quantity and quality do not seem to depend on hydrology (although seasonal flooding is  associated with less organic wetland soils) or soil characteristics. Dominant vegetation  and fire are the main drivers of OM content and composition. Structural carbohydrate,  protein and lipid (> 60% of total organic fraction) dominate. Widespread anaerobic  conditions and the recent character of the sediments could explain the preservation of  different fractions of the original detritus composition (due to different vegetation and  presence of microbes).

nach oben

Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil

Auenwald Pantanal

Auenwald Pantanal

Foto: Naturefund

Allometrische Modelle und Baumringanalysen werden kombiniert, um die Kohlenstoffspeicherung in überirdischer Biomasse von Auwäldern im Pantanal zu berechenen.

Kenndaten

Autor: J. Schöngart, J. Arieira, C. F. Fortes, E. C. de Arruda, C. N. da Cunha

Jahr: 2011

Zeitschrift: Biogeosciences 8

Seite: 3407-3421

Linkhttp://www.biogeosciences.net/8/3407/2011/bg-8-3407-2011.pdf

Zusammenfassung (engl.): 

In this study allometric models are used combined with tree ring analysis to estimate carbon stocks and sequestration in the aboveground coarse wood biomass (AGWB) of wetland forests in the Pantanal, located in central South America.

In four 1-ha plots in stands characterized by the pioneer tree species Vochysia divergens Pohl (Vochysiaceae) forest inventories (trees ≥10 cm diameter at breast height, D) have been performed and converted to estimates of AGWB by two allometric models using three independent parameters (D, tree height H and wood density ρ). A propagation of measurement errors is performed to estimate uncertainties in the estimates of AGWB. Carbon stocks of AGWB vary from 7.8 ± 1.5 to 97.2 ± 14.4 Mg C ha-1 between the four stands.

From models relating tree ages determined by dendrochronological techniques to C-stocks in AGWB we derived estimates for C-sequestration which differs from 0.50 ± 0.03 to 3.34 ± 0.31 Mg C ha-1 yr-1. Maps based on geostatistic techniques indicate the heterogeneous spatial distribution of tree ages and C-stocks of the four studied stands. This distribution is the result of forest dynamics due to the colonizing and retreating of V. divergens and other species associated with pluriannual wet and dry episodes in the Pantanal, respectively. Such information is essential for the management of the cultural landscape of the Pantanal wetlands.

nach oben

Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration

Feuchtgebiet

Feuchtgebiet

Foto: Naturefund

Eine vergleichen Studie über Kohlenstoffbindung und Methanemissionen von Feuchtgebieten.

Kenndaten

Autor: G. J. Whiting, J. P. Chanton

Jahr: 2001

ZeitschriftTellus 53B

Seite: 521-528

Linkhttp://www.tellusb.net/index.php/tellusb/article/view/16628

Zusammenfassung (engl.): 

Carbon fixation under wetland anaerobic soil conditions provides unique conditions for long-term storage of carbon into histosols. However, this carbon sequestration process is intimately linked to methane emission from wetlands. The potential contribution of this emitted methane to the greenhouse effect can be mitigated by the removal of atmospheric CO2 and storage into peat.

The balance of CH4and CO2 exchange can provide an index of a wetland's greenhouse gas (carbon) contribution to the atmosphere. Here, the atmospheric global warming potential of methane (GWPM) is related with annual methane emission/carbon dioxide exchange ratio of wetlands ranging from the boreal zone to the near-subtropics. This relationship permits one to determine the greenhouse carbon balance of wetlands by their contribution to or attenuation of the greenhouse effect via CH4 emission or CO2 sink, respectively. 

Annual measurements of the relationship between methane emission and net carbon fixation in three wetland ecosystems are reported. The ratio of methane released to annual net carbon fixed varies from 0.05 to 0.20 on a molar basis. Although these wetlands function as a sink for CO2, the 21.8-fold greater infrared absorptivity of CH4 relative to CO2(GWPM) over a relatively short time horizon (20 years) would indicate that the release of methane still contributes to the overall greenhouse effect. As GWPM decreases over longer time horizons (100 years), the analyses suggest that the subtropical and temperate wetlands attenuate global warming, and northern wetlands may be perched on the “greenhouse compensation” point. Considering a 500-year time horizon, these wetlands can be regarded as sinks for greenhouse gas warming potential, and thus attenuate the greenhouse warming of the atmosphere.

nach oben

Carbon stocks and soil sequestration rates of tropical riverine wetlands

Feuchtgebiet Moskau, Russland

Feuchtgebiet Moskau, Russland

Foto: Wikimedia Commons

Feuchtgebiete speichern nicht nur sehr effizient CO2 sondern auch von Stickstoff (N). Ihre hohe Speicherkapazität liegt zum Teil an ihrer hohen Produktivität und niedrigen Bodenabbaurate.

 

Kenndaten

Autor: M. F. Adame, N. S. Santini, C. Tovilla, A. Vázquez-Lule, L. Castro and M. Guevara 

Jahr: 2015

Zeitschrift:  Biogeosciences 12

Seite: 3805–3818

Linkhttp://www.biogeosciences.net/12/3805/2015/bg-12-3805-2015.pdf

Zusammenfassung (engl.):

Riverine wetlands are created and transformed by geomorphological processes that determine their vegetation composition, primary production and soil accretion, all of which are likely to influence C stocks. Here, we compared ecosystem C stocks (trees, soil and downed wood) and soil N stocks of different types of riverine wetlands (marsh, peat swamp forest and mangroves) whose distribution spans from an environment dominated by river forces to an estuarine environment dominated by coastal processes. We also estimated soil C sequestration rates of mangroves on the basis of soil C accumulation. We predicted that C stocks in mangroves and peat swamps would be larger than marshes, and that C, N stocks and C sequestration rates would be larger in the upper compared to the lower estuary.

nach oben

Quantifying the Effects of Vegetation on the Carbon Storage of Northern Great Lakes Coastal Wetlands

Pantanal, Südamerika

Pantanal, Südamerika

Foto: Naturefund

Feuchtgebiete sind die größten terrestrischen Kohlenstoffspeicher. Sie speichern weltweit ca. 500-700 Gt.

Kenndaten

Autor: N. Hurst

Jahr: 2014

Zeitschrift: DePaul Discoveries 3.1, Artikel 8 

Link: http://via.library.depaul.edu/cgi/viewcontent.cgi?article=1007&context=depaul-disc

Zusammenfassung (engl.): 

Given the rising concentration of carbon dioxide (CO2) in the Earth’s atmosphere, it is important to assess the natural reservoirs in which carbon can be stored. Great Lakes coastal wetlands are a potentially significant pool of carbon that have yet to be thoroughly investigated. The study measured soil C (carbon) and depth of organic matter in swamp, transitional, and wet meadow vegetation zones of three wetlands located in the Eastern half of Michigan’s Upper Peninsula, in the Les Chenaux Islands.

nach oben

Percent Potentially Restorable Wetlands

Sonnenuntergang im Pantanal

Sonnenuntergang im Pantanal

Foto: Naturefund

Feuchtgebiete bieten greifbaren Service für Ökosysteme, z. B. Lebensraum für die Tierwelt, biologische Vielfalt, Reduzierung von Bodenabbau, Grundwasseranreicherung, Filterung, Kohlenstoffbindung und als Speicher von Flutwasser.

Kenndaten

Autor: EnviroAtlas is a collaborative effort led by EPA. Data for potentially restorable wetlands were generated by Elena Horvath, EPA Student Services Contractor, and J. Christensen, M. Mehaffey and A. Neale, EPA 

Jahr: 2014

Zeitschrift EnviroAtlas 

Link: http://enviroatlas.epa.gov/PercentPotentiallyRestorableWetlands.pdf

Zusammenfassung (engl.):

Major regional wetland losses have occurred across the conterminous U.S. over the last 200+ years with expanding coastal development, agricultural land conversion, and urbanization. Wetlands also have the ability to store atmospheric carbon. Potentially restorable wetlands, by banking additional stored carbon, can make a significant contribution to climate change mitigation. Cultivated wetlands lose their stored soil organic carbon to the atmosphere, but soil organic carbon is rapidly restored when wetland function is restored.

nach oben

Comparing carbon sequestration in temperate freshwater wetland communities

Pantanal, Südamerika

Pantanal, Südamerika

Foto: Naturefund

Diese Studie vergleicht sechs gemäßigte Feuchtgebiete in Ohio, die zu den zwei verschiedenen hydrogeomorphologischen Typen zählen.

Kenndaten

Autor: B. Bernal, W. J. Mitsch

Jahr: 2012

Zeitschrift: Global Change Biology 18.5

Link: https://www.researchgate.net/216277483_Comparing_carbon_sequestration

Zusammenfassung (engl.): 

High productivity and waterlogged conditions make many freshwater wetlands significant carbon sinks. Most wetland carbon studies focus on boreal peatlands, however, with less attention paid to other climates and to the effects of hydrogeomorphic settings and the importance of wetland vegetation communities on carbon sequestration. Three cores were extracted in each community and analyzed for total carbon content to determine the soil carbon pool.

The amount of carbon that a wetland stores and emits every year depends greatly on the hydrogeochemical characteristics of the ecosystem, which, in turn, determine the wetland vegetation communities. Therefore, to estimate with precision a wetland’s carbon pool and carbon sequestration capacity, it would be more accurate to differentiate between wetland types, especially if wetlands are to be used as a carbon–sequestering systems to reduce net greenhouse gas emissions.

nach oben

Investing in Natural Resource Protection for Climate and Multiple Benefits: California Case Studies - Wetlands and Climate Change

Pantanal, Südamerika

Pantanal, Südamerika

Foto: Naturefund

Feuchtgebiete sind höchst produktive Ökosysteme, die große Menschen an Kohlenstoff speichern können.

Kenndaten

Autor: The Nature Conservancy

Jahr: 2014

ZeitschriftThe Nature Conservancy

Seite: 15-17

Link: http://www.nature.org/ourinitiatives/regions/northamerica/unitedstates/california/ca-natural-resource-protection-for-climate.pdf

Zusammenfassung (engl.):

Wetlands provide many valuable ecological services, including storing surface water, controlling pollution and flooding, helping to replenish aquifers, controlling erosion, protecting shorelines, maintaining natural communities of plants and animals, and providing opportunities for education and recreation. Wetlands in estuary environments, many of which border major population centers, also provide resilience to increases in sea level anticipated as the climate warms . 

Under the right conditions, wetlands have the capacity to build soil in response to rising water, enabling the ecosystem to adapt to elevated sea levels while at the same time storing carbon.

nach oben

 

Alle Artikel